Praveer Sihota | Materials Science | Best Researcher Award

Dr. Praveer Sihota | Materials Science | Best Researcher Award

University Medical Center Hamburg, Germany, India

Author Profile

Early Academic Pursuits 🎓✨

Dr. Praveer Sihota’s journey into the fascinating realm of biomedical engineering began with a robust academic foundation. Completing his Bachelor of Engineering in Biomedical Engineering from Rajiv Gandhi Technical University, Bhopal (2006-2010), he achieved a commendable score of 73.5%. Building on this, he pursued a Master of Technology in Biomedical Engineering at MIT, Manipal University, Karnataka (2011-2013), earning an impressive CGPA of 8.14/10.

His academic progression culminated in a Ph.D. in Biomedical Engineering from the prestigious Indian Institute of Technology Ropar (2015-2021). His doctoral research not only expanded the boundaries of knowledge in bone characterization but also earned him the Best PhD Thesis of the Year 2021, a testament to his groundbreaking work. 📜🏆

Professional Endeavors 💼🔬

Dr. Sihota’s professional journey reflects his dedication to exploring biomedical engineering and bone health. Early in his career, he honed his skills as an M.Tech Trainee in Bioinstrumentation at CSIR-CSIO Chandigarh (2012-2013). He then advanced to roles such as Research Fellow in Biostatistics at IIT Mandi (2013-2014) and in Endocrinology at PGIMER Chandigarh (2015).

Notably, as a Project Assistant at IIT Ropar (2021), he delved into bone mechanical testing. Currently, Dr. Sihota holds the prestigious Alexander von Humboldt Fellowship as a Post-doctoral Research Fellow in the Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Germany (2022-2025). His work focuses on the multi-scale assessment of bone quality, furthering insights into metabolic bone diseases. 🌍🔍

Contributions and Research Focus 🧬🛠️

Dr. Sihota’s research delves into the multiscale characterization of bone, emphasizing metabolic disorders like type 2 diabetes, obesity, and osteoporosis. His studies on the effects of advanced glycation end products and glucocorticoids reveal their impact on bone material and mechanical properties, mineralization, collagen quality, and skeletal fragility.

By leveraging clinical cohorts and animal models, Dr. Sihota investigates the underlying mechanisms of pathological bone changes, offering critical insights into fracture risks. His work stands as a beacon for developing diagnostic tools and treatments to combat fragility fractures, enhancing the quality of life for individuals with metabolic bone diseases. 🩺🦵

Accolades and Recognition 🌟🏅

Dr. Sihota’s exemplary contributions have garnered accolades, with his Best PhD Thesis of the Year 2021 highlighting his innovative approach and dedication. Being selected as an Alexander von Humboldt Fellow is another significant milestone, reflecting his status as a leading researcher in his field.

Impact and Influence 🌍📈

Dr. Sihota’s work has left a profound impact on both academic and clinical realms. By integrating engineering principles with medical science, he addresses critical challenges in bone health. His research findings have implications for clinicians, researchers, and healthcare policymakers, shaping strategies to prevent and manage bone fragility.

Legacy and Future Contributions 🔮🚀

Dr. Sihota’s legacy is rooted in his commitment to advancing biomedical engineering. Looking ahead, he aims to expand the frontiers of bone health research, exploring new diagnostic tools and innovative treatments for metabolic bone diseases. His vision encompasses fostering interdisciplinary collaboration and mentoring the next generation of researchers.

With a career characterized by excellence, innovation, and compassion, Dr. Praveer Sihota continues to inspire and contribute significantly to the global scientific community. His journey exemplifies the power of perseverance and intellectual curiosity, paving the way for a healthier future. 🌟👨‍🔬

Citations

A total of 315 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         315
  • h-index           22
  • i10-index        10

Notable Publications 

  • Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice
    • Authors: Krug, J., Plumeyer, C., Davydok, A., Fiedler, I.A.K., Jähn-Rickert, K.
    • Journal: Biomaterials Advances
    • Year: 2025.
  • Osteomodulin deficiency in mice causes a specific reduction of transversal cortical bone size
    • Authors: Zhao, W., von Kroge, S., Jadzic, J., Schinke, T., Yorgan, T.A.
    • Journal: Journal of Bone and Mineral Research
    • Year: 2024.
  • Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk
    • Authors: Cirovic, A., Schmidt, F.N., Vujacic, M., Busse, B., Milovanovic, P.
    • Journal: JBMR Plus
    • Year: 2024.
  • Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra
    • Authors: Mehta, D., Sihota, P., Tikoo, K., Kumar, S., Kumar, N.
    • Journal: Bone Reports
    • Year: 2023.
  • The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin
    • Authors: Dwivedi, K.K., Lakhani, P., Sihota, P., Kumar, S., Kumar, N.
    • Journal: Acta Biomaterialia
    • Year: 2023.

Madhavi Dalsaniya | Materials Science | Best Researcher Award

Ms. Madhavi Dalsaniya | Materials Science | Best Researcher Award

Warsaw University of Technology, India

Author Profile

Early Academic Pursuits 🎓

Madhavi H. Dalsaniya’s academic journey is a testament to her dedication and passion for the field of material science. Her formative years in education began at St. Francis High School in Jamnagar, Gujarat, India, where she achieved Distinction in her Secondary Education (2011). This early academic success paved the way for her further pursuit of knowledge in the field of Physics. Madhavi continued her academic endeavors at Sunrise School in Jamnagar, where she completed her Higher Secondary Education in 2013, securing First Class. With a solid foundation in physics, she pursued her undergraduate studies at The Maharaja Sayajirao University of Baroda (MSU), Vadodara, Gujarat, where she earned a B.Sc. in Physics in 2016, finishing with Second Class.Her strong academic performance led her to pursue a Master’s degree in Physics at the same institution, The Maharaja Sayajirao University of Baroda, where she graduated in 2018 with First Class honors. This period of advanced studies sparked her growing interest in Material Science, which later became the focal point of her career. It was during her Master’s that she developed a keen interest in the properties of materials and their potential applications, setting the stage for her future academic endeavors.

Professional Endeavors and Research Focus 🔬

Madhavi H. Dalsaniya’s professional journey has been marked by a steadfast commitment to the study and application of material science. Currently, she is pursuing her Ph.D. in Material Science at the prestigious Warsaw University of Technology in Warszawa, Poland, a position she has held since October 2020. The focus of her doctoral research is on the properties and applications of materials in various fields, contributing to the growing body of knowledge in material science. Her work involves exploring new materials with enhanced properties and understanding their structural characteristics at the atomic and molecular levels.As a doctoral student, Madhavi has not only been working diligently on her research but also actively engaging with the scientific community through academic conferences, seminars, and workshops. She has established herself as a budding researcher in the field, gaining valuable insights and collaborating with experts in the field of material science. Her research contributions focus on novel materials that can be used in a wide array of industries, including electronics, nanotechnology, and renewable energy.

Contributions and Research Focus 🌍

Madhavi’s research is making significant strides in the field of material science. She focuses on advancing the understanding of material properties, which can potentially lead to groundbreaking advancements in various technological applications. Her research encompasses a range of topics, including the study of nanomaterials, their synthesis, characterization, and potential applications in energy storage and conversion systems. By investigating the unique properties of different materials at the microscopic level, Madhavi aims to contribute to the development of more efficient and sustainable materials for future technologies.One of her key research areas is the exploration of new materials with enhanced conductivity and stability for use in electronic devices. She is also interested in the role of nanomaterials in renewable energy, including solar cells and energy storage devices. Through her work, Madhavi aims to push the boundaries of material science and contribute to the creation of more sustainable and efficient solutions for contemporary challenges.

Accolades and Recognition 🏆

Although still early in her career, Madhavi has already earned recognition for her academic achievements and research contributions. Her dedication to the field of material science has not gone unnoticed, and she has been acknowledged for her outstanding performance as a doctoral student. The first-class honors she received during her M.Sc. program laid the foundation for her future academic success. As a Ph.D. student, Madhavi has been invited to present her research at several international conferences, where her work has garnered attention for its originality and scientific rigor.Her involvement in the research community and her commitment to advancing material science have also led to opportunities for collaboration with prominent researchers in her field. Her work has contributed to expanding the knowledge base surrounding the application of nanomaterials in various industries, solidifying her reputation as a promising researcher.

Impact and Influence 🌟

Madhavi H. Dalsaniya’s work is poised to make a lasting impact on the field of material science. By advancing our understanding of the properties of materials, her research is expected to lead to innovations that will drive the development of new technologies. In particular, her exploration of nanomaterials and their potential applications in renewable energy and electronics could play a significant role in addressing some of the world’s most pressing challenges, such as energy storage and climate change.Her influence extends beyond her research contributions, as she serves as a role model for aspiring scientists and researchers, particularly women in STEM fields. Madhavi’s academic journey and perseverance in pursuing advanced research serve as an inspiration to others who seek to contribute to scientific advancements and make a meaningful impact on society.

Legacy and Future Contributions 🌱

Looking toward the future, Madhavi H. Dalsaniya is on track to make significant contributions to the world of material science. As she continues her Ph.D. research, her work will undoubtedly leave a lasting legacy in the field. She aims to continue exploring the applications of new materials in the realms of energy, electronics, and sustainability. The potential for her research to shape future technologies is immense, and she is well-positioned to be a leading figure in the development of novel materials that address global challenges.Madhavi’s commitment to advancing material science, coupled with her passion for research and innovation, ensures that her future contributions will have a profound impact on both the scientific community and society at large. As she progresses in her academic career, her work is expected to inspire future generations of scientists and engineers, making her a key figure in the evolution of material science. 🌍🔬

Citations

A total of 106 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         106
  • h-index           12
  • i10-index        05

Notable Publications 

  • Title: Pressure-Dependent Thermal and Mechanical Behaviour of a Molecular Crystal of Bromine
    Authors: Dalsaniya, M.H., Upadhyay, D., Patel, P., Kurzydłowski, K.J., Kurzydłowski, D.
    Journal: Molecules
    Year: 2024.
  • Title: Exploration of Si-N Compounds as High Energy Density Materials
    Authors: Patel, P., Patel, S., Dalsaniya, M.H., Kurzydłowski, K.J., Jha, P.K.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024.
  • Title: High-Pressure Stabilization of Open-Shell Bromine Fluorides
    Authors: Dalsaniya, M.H., Upadhyay, D., Jan Kurzydłowski, K., Kurzydłowski, D.
    Journal: Physical Chemistry Chemical Physics
    Year: 2023.
  • Title: A Density Functional Theory Study on the Assessment of α-CN and α-CP Monolayers as Anode Material in Li-Ion Batteries
    Authors: Patel, P., Patel, S., Chodvadiya, D., Kurzydłowski, K.J., Jha, P.K.
    Journal: Journal of Energy Storage
    Year: 2023.
  • Title: Defects and Doping Engineered Two-Dimensional o-B2N2 for Hydrogen Evolution Reaction Catalyst: Insights from DFT Simulation
    Authors: Chodvadiya, D., Dalsaniya, M.H., Som, N.N., Kurzydłowski, K.J., Jha, P.K.
    Journal: International Journal of Hydrogen Energy
    Year: 2023.

Dibyendu Sekhar Bag | Materials Science | Outstanding Scientist Award

Dr. Dibyendu Sekhar Bag | Materials Science | Outstanding Scientist Award

Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO, India

Author Profile

Early Academic Pursuits 🎓📚

Dr. Dibyendu Sekhar Bag embarked on a rigorous academic journey that laid a strong foundation for his scientific pursuits and contributions. Born with a keen interest in the sciences, Dr. Bag completed his secondary and higher secondary education with first-division distinctions from the West Bengal Board of Secondary Education in 1983 and the West Bengal Council of Higher Secondary Education in 1985, respectively. His academic prowess led him to Burdwan University, where he pursued a Bachelor of Science degree with honors in Chemistry, accompanied by Physics and Mathematics. His undergraduate years were marked by diligence and a budding passion for chemical sciences, culminating in his achievement of a second-division grade.Eager to delve deeper into the world of chemistry, Dr. Bag pursued a Master’s degree in Chemistry at the prestigious Indian Institute of Technology (IIT), Kharagpur, where he specialized in all facets of the field, including Physical, Organic, Inorganic, and Polymer Chemistry. His outstanding performance earned him an impressive CGPA of 9.16 out of 10, reflecting his dedication and academic excellence. Driven by a desire to further his knowledge, he continued his studies at IIT Kharagpur, where he attained a Ph.D. in Polymer Science in 1996. His doctoral research laid the groundwork for his future contributions in the field of material science and polymers, setting him on a path to innovation and discovery.

Professional Endeavors 🏛️🔬

Dr. Bag’s professional journey began with two formative years in industrial research and development at the Ahmedabad Textile Industry’s Research Association. This role allowed him to gain invaluable practical experience in the textile industry, particularly in the field of material applications, where he could apply his expertise in polymer science to address real-world challenges.Following his industrial experience, Dr. Bag transitioned to academia, where he took on teaching and research responsibilities at the Birla Institute of Technology, Mesra. His role in academia not only allowed him to share his knowledge with aspiring scientists but also enabled him to further his own research capabilities. This two-year period in academia marked an essential phase in his career, combining research and mentorship as he worked closely with students and young researchers, nurturing their interest in chemistry and materials science.In 1999, Dr. Bag joined the Defence Materials & Stores Research & Development Establishment (DMSRDE) under the Defence Research and Development Organisation (DRDO) in Kanpur. Over the next 24 years, he dedicated his career to advancing India’s defense capabilities, working on projects essential to national security and defense technology. Rising to the prestigious position of Scientist-G and Additional Director, Dr. Bag became a pivotal figure at DMSRDE, where he focused on materials and stores research, contributing to numerous breakthroughs that have reinforced India’s defense sector.

Contributions and Research Focus 🔍📈

Dr. Bag’s research primarily focuses on polymer science, with a particular emphasis on its applications in defense technology. His work at DMSRDE has involved developing advanced polymeric materials that are vital for the production of durable, high-performance defense equipment. His expertise in polymers has led to the creation of materials that withstand extreme conditions, a crucial requirement in defense applications. Furthermore, his interdisciplinary approach has seen him integrate principles of organic, inorganic, and physical chemistry to push the boundaries of material science, leading to innovative solutions that address the unique challenges faced by the defense sector.Beyond his research in polymers, Dr. Bag has contributed significantly to other aspects of defense materials research. His work encompasses developing environmentally sustainable materials, enhancing the longevity and durability of defense assets, and improving the functionality of materials used in critical defense systems. His contributions have not only strengthened India’s defense materials technology but have also established him as a thought leader in material science research.

Accolades and Recognition 🏆🌟

Over the years, Dr. Bag has earned multiple accolades for his contributions to defense research and material sciences. His innovative research, commitment to excellence, and substantial contributions to defense technology have earned him respect and recognition within DRDO and among the broader scientific community. His rise to the esteemed position of Scientist-G/Additional Director is a testament to his dedication and expertise, and his work continues to inspire peers and young researchers alike.

Impact and Influence 🌐💡

Dr. Bag’s influence extends far beyond the boundaries of DMSRDE and DRDO. His work in polymer science and material engineering has had a profound impact on India’s defense technology, ensuring that the armed forces are equipped with materials that enhance performance and reliability. His research has not only fortified the defense capabilities of the country but has also set new benchmarks in the field of material science. His role in the development of high-performance polymers has paved the way for further advancements, inspiring future researchers to explore new applications of polymer science.In addition to his contributions to defense technology, Dr. Bag’s academic and professional journey serves as an inspiration to students, researchers, and fellow scientists. His dedication to continuous learning and innovation embodies the spirit of scientific inquiry, encouraging others to pursue their research goals with passion and perseverance.

Legacy and Future Contributions 🔮🚀

As Dr. Dibyendu Sekhar Bag continues his work at DMSRDE, his legacy is already taking shape. His contributions to polymer science and defense technology will undoubtedly have a lasting impact, influencing future research and development in material science. Dr. Bag’s commitment to excellence and innovation is a guiding light for upcoming generations of scientists and researchers, who will benefit from his pioneering work and dedication to national service.Looking forward, Dr. Bag aims to continue exploring new frontiers in material science, with a focus on sustainable and resilient materials. His ongoing research is likely to yield further advancements in defense technology, positioning India as a leader in innovative defense materials. With a career marked by scientific rigor, impactful contributions, and a commitment to national progress, Dr. Bag’s journey exemplifies the potential of dedicated research to shape the future of defense and material sciences. His legacy as a scientist, mentor, and innovator will undoubtedly endure, inspiring future generations to pursue excellence in their own academic and professional endeavors.

Citations

A total of 695 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         695
  • h-index           66
  • i10-index        17

Notable Publications 

  • Title: High-performance PPS/PEEK blend and its composites with milled carbon fiber: Study on their mechanical, thermal and dielectric properties
    Authors: Tiwari, S., Bag, D.S., Mishra, P., Lal, G., Dwivedi, M.
    Journal: Polymer Composites
    Year: 2024.
  • Title: Formulation and Characterization of Silane Modified Acrylic Based Transparent Organic-Inorganic Hybrid Coatings for Improved Instrumented Indentation Hardness of PMMA
    Authors: Das, V., Singh, A.S., Singh, A., Mishra, P., Bag, D.S.
    Journal: Silicon
    Year: 2024.
  • Title: Poly (ethylene-co-methacrylic acid) (PEMA) ionomers and their applications including self-healing and shape memory applications
    Authors: Tiwari, S., Bag, D.S., Dwivedi, M.
    Journal: Journal of Polymer Research
    Year: 2024.
  • Title: Self-healing thermoplastic elastomeric blends of zinc-ionomer and styrene–butadiene–styrene block copolymer and their characterization
    Authors: Tiwari, S., Bag, D.S., Dwivedi, M.
    Journal: Polymer International
    Year: 2024.
  • Title: Effect of in-situ Incorporated Silica Particles on Properties of Polyurethane Elastomer
    Authors: Tripathi, N., Singh, A.S., Banshiwal, J.K., Pandey, P., Bag, D.S.
    Journal: Silicon
    Year: 2024.

P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Dr. P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Madonna Arts and Science College for Women, India

Author Profile

Early Academic Pursuits 🎓

Dr. S.R.P. Arockia Michael Mercy embarked on her academic journey with a focus on Physics, completing her Bachelor of Science in Physics from MK University in 2005. Her passion for the subject led her to pursue a Master’s in Physics at Arul Anandar College, affiliated with MK University, completing it in 2017. This foundational education ignited her curiosity in the fields of microstrip patch antennae and solar cells, motivating her to delve further into research. Driven by her dedication to innovation and scientific advancement, she earned her PhD in Physics from MK University in 2023, marking a significant milestone in her academic journey.

Professional Endeavors and Teaching Experience 👩‍🏫

Dr. Mercy’s career as an educator began with her role as an Assistant Professor at Madonna Arts and Science College for Women, where she has devoted eight years to shaping the minds of future scientists. With her teaching interests spanning various subjects, including Physics laboratory practices, and personal passions like choir, dance, and hand arts, she has contributed to the academic and holistic growth of her students. Her dedication to teaching goes beyond mere theoretical knowledge, as she emphasizes hands-on learning and practical applications of physics concepts in real-world settings. Her versatility and passion for various forms of art also enrich her classroom experience, creating a dynamic and inclusive learning environment.

Contributions and Research Focus 🔬

Dr. Mercy’s research interests lie primarily in Microstrip Patch Antenna and Solar Cells, fields that have tremendous potential for impacting technology and sustainability. Microstrip patch antennas, known for their compact size and efficiency, are essential in modern communication systems, from mobile devices to satellite applications. Dr. Mercy’s research contributes to advancements in antenna technology, focusing on enhancing signal clarity, reducing interference, and improving overall efficiency. Her work in solar cells aligns with the global pursuit of renewable energy sources. By exploring innovative materials and designs, she contributes to making solar technology more accessible and efficient, aiming to reduce environmental impact and dependence on fossil fuels.

Accolades and Recognition 🏅

Throughout her career, Dr. Mercy has been recognized for her dedication to education and commitment to research. Her innovative approaches in the classroom and contributions to her research areas have earned her respect among colleagues and students alike. Her research in microstrip patch antennae and solar cells is particularly noteworthy in academic circles, as these fields are both highly competitive and impactful. She has also participated in various academic conferences, sharing her findings and insights with fellow researchers and contributing to the broader scientific community.

Impact and Influence 🌍

Dr. Mercy’s influence extends beyond her classroom, reaching her students, colleagues, and the scientific community. As a mentor, she encourages her students to pursue their passions, fostering a culture of curiosity and perseverance. Her work in microstrip patch antennae and solar cells is relevant not only in academia but also in industries focused on communications and renewable energy. By aligning her research with global needs for sustainable energy and advanced communication technology, she has positioned herself as an advocate for positive change and innovation.

Legacy and Future Contributions 🚀

As Dr. Mercy continues her journey in academia and research, her contributions promise to leave a lasting legacy. Her students benefit not only from her knowledge in physics but also from her holistic approach to learning, which includes arts and creative thinking. Her ongoing research in microstrip patch antennae and solar cells holds the potential for groundbreaking discoveries that could influence these fields for years to come. As she expands her research and engages in collaborative projects, Dr. Mercy aims to inspire future generations of physicists and researchers to pursue innovation and sustainability.

Citations

A total of 21 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         21
  • h-index           12
  • i10-index        3

Notable Publications 

  • Title: Novel nanocomposite based microstrip patch antenna for C and X band applications
    Author(s): Mercy, P.A.M.
    Journal: Materials Chemistry and Physics
    Year: 2024.
  • Title: Gain Enhancement of Composite Photonic Crystal Microstrip Patch Antenna Inspired by Maxwell Garnett Model for C-Band, X-Band and Ku Band Applications
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: Comparative Study of Polarization-Dependent Conversion Efficiency of GaAs and Si Solar Cells at Oblique Incident Angles Using Surface DLAR Coating of MgF2/ZnSe
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: A Comparative Study of Diverse RF-MEMS Switch Design Concepts Experimentally Verified up to 110 GHz for Beyond-5G, 6G and Future Networks Applications
    Author(s): Iannacci, J., Tagliapietra, G., Donelli, M., Guha, K., Lenka, T.R.
    Journal: Lecture Notes in Electrical Engineering
    Year: 2024.
  • Title: Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Applied Surface Science Advances
    Year: 2023.

Manjinder Singh | Materials Science | Best Researcher Award

Manjinder Singh - Best Researcher Award - Award Winner 2023🏆

Mr. Manjinder Singh : Materials Science

Congratulations, Mr. Manjinder Singh, on winning the esteemed Best Researcher Award from Research! Your dedication, innovative research, and scholarly contributions have truly made a significant impact in your field. Your commitment to advancing knowledge and pushing the boundaries of research is commendable. Here's to your continued success in shaping the future of academia and making invaluable contributions to your field. Well done!

He was an active Ph.D. scholar at the Department of Polymer and Process Engineering at IIT Roorkee, Uttarakhand, India. His research focus predominantly centered on the development of bio-based pressure-sensitive adhesives (PSAs) within the realm of Material Science and Technology, showcasing a blend of theoretical and experimental approaches. His interdisciplinary research interests encompassed areas like polymeric biomaterials, smart polymeric materials, molecular dynamics simulations, healthcare adhesives, and their applications in food packaging.

Professional Profiles:

Early Academic Pursuits :

He embarked on his academic journey with a B.Tech. in Mechanical Engineering from Punjab Technical University, displaying a strong foundation in engineering principles. Following this, he pursued an M.Tech. in Materials Science and Technology from the Indian Institute of Space Science & Technology, exhibiting a shift towards materials and their applications. His scholarly interests in polymers and their multifaceted functionalities led him to his current Ph.D. pursuit at the Indian Institute of Technology Roorkee, exploring innovative paths in Polymer and Process Engineering.

Professional Endeavors :

His professional trajectory commenced with an internship as a Quality Engineer at Majestic Auto Limited, Ludhiana, where he actively engaged in refining component quality within specific timelines. This industrial stint offered valuable hands-on experience, aligning with his academic pursuits. This blend of theoretical expertise and practical exposure provided a holistic understanding of material properties, quality enhancement, and industrial applications.

Contributions and Research Focus in Materials Science :

His research endeavors have primarily revolved around the development of bio-based pressure-sensitive adhesives, blending theoretical frameworks with experimental methodologies. Manjinder has showcased an interdisciplinary approach by incorporating computational studies with experimental investigations, focusing on smart polymeric materials, biomaterials, and their diverse applications in healthcare and food packaging adhesives. Notably, his work on mutlistimuli-responsive polymeric materials for potential sensor applications during his M.Tech. program underscored his innovation in this domain.

Accolades and Recognition :

He has been the recipient of esteemed awards and fellowships, including the Commonwealth Split-site Scholarship (UK) and prestigious research fellowships awarded by the Ministry of Education in India. His academic excellence, demonstrated by a remarkable CGPA throughout his academic journey, has been recognized through GATE M.Tech. Fellowship and senior research fellowships.

Impact and Influence :

His patent for a solvent-free method to synthesize bio-based pressure-sensitive adhesives (PSAs) stands as a testament to his innovative contributions in material synthesis and applications. His involvement in workshops, both as a participant and attendee, signifies his commitment to continuous learning and staying abreast of advancements in his field.

Legacy and Future Contributions :

His legacy lies in his dedication to pioneering research in Polymer Science, specifically in developing sustainable and efficient materials for diverse applications. His interdisciplinary approach, encompassing theoretical, computational, and experimental facets, is poised to leave a lasting impact on the field. As he continues his academic journey, His commitment to innovation and his contributions to the realm of materials science are set to pave the way for novel advancements and applications in the domain.

Notable Publications :

Citations:

A total of  317 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    159           158
  • h-index        6                6
  • i10-index     4                4