Asit Baran Panda | Materials Chemistry | Best Researcher Award

Dr. Asit Baran Panda | Materials Chemistry | Best Researcher Award

CSIR_National Metallurgical Laboratory, India

Author Profile

Early Academic Pursuits 📚

Dr. Asit Baran Panda’s academic journey reflects his unwavering passion for science, especially in chemistry and material science. His foundation was laid with a B.Sc. in Chemistry (Hons.) from Vidyasagar University in 1995, followed by an M.Sc. in Chemistry from Kanpur University in 1998. Dr. Panda’s thirst for advanced knowledge led him to the prestigious Indian Institute of Technology (IIT), Kharagpur, where he completed his Ph.D. in 2004, specializing in nanostructured materials. This robust academic foundation positioned him as a future leader in material science research.

Professional Endeavors 🌍

Dr. Panda currently serves as a Senior Principal Scientist in the Functional Materials Group (FM) of the Advanced Materials and Processes (AMP) Division at CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur. His role involves spearheading cutting-edge research in nanomaterials, energy storage, and environmental solutions. Over the years, he has gained recognition for his innovative work in materials science, contributing significantly to the development of sustainable technologies.

Contributions and Research Focus 🔬

Dr. Panda’s research interests span diverse areas, focusing on the design and synthesis of size, shape, and morphology-selective nanostructured materials. His pioneering efforts include:

  • Energy Conversion and Storage ⚡
    Dr. Panda has made remarkable contributions to the development of Li-ion batteries and capacitors, essential for advancing renewable energy solutions. He has also worked extensively on visible-light-driven photocatalysis for clean energy generation and water splitting to produce sustainable hydrogen fuel.
  • Environmental Remediation 🌱
    He has developed innovative nanostructures for tackling environmental pollutants, contributing to eco-friendly and sustainable solutions.
  • Heterogeneous Catalysis for Green Chemistry ♻️
    Dr. Panda’s work in designing catalysts for green chemical processes aligns with global efforts toward reducing industrial carbon footprints.
  • Inorganic Pigments 🎨
    His expertise extends to inorganic pigments, driving advancements in materials for industrial applications.

Accolades and Recognition 🏆

Dr. Panda’s groundbreaking research has earned him numerous accolades and recognition. As a senior scientist at a leading national research institution, his contributions are widely acknowledged in academic and industrial circles. His innovations have significantly impacted material science and its applications in energy, environment, and industry.

Impact and Influence 🌟

Dr. Panda’s work has had a profound impact on the field of nanomaterials. His advancements in energy storage have the potential to revolutionize the renewable energy sector, enabling efficient and sustainable solutions. Moreover, his contributions to environmental remediation and green chemistry underscore his commitment to addressing pressing global challenges.

Legacy and Future Contributions 🌐

As a researcher, mentor, and innovator, Dr. Panda continues to inspire the next generation of scientists. His vision for creating sustainable and efficient materials aligns with global priorities for clean energy and environmental conservation. Future endeavors may include:

  • Expanding research in graphene-based nanomaterials for multifaceted applications.
  • Developing next-generation materials for solar energy harvesting.
  • Collaborating globally to tackle challenges in environmental sustainability and energy efficiency.

Citations

A total of 7434 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        7434
  • h-index          50
  • i10-index       114

Notable Publications

  • Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo
    • Authors: D. Das, P. Ghosh, A. Ghosh, C. Haldar, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin and Poly(Acrylic Acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin
    • Authors: D. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin Cross Linked with Poly(HEMA): A Novel Hydrogel for Colon-Specific Delivery of Ornidazole
    • Authors: D. Das, R. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: RSC Advances
    • Year: 2013.
  • Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene
    • Authors: N. Sutradhar, A. Sinhamahapatra, S. Pahari, M. Jayachandran, A. B. Panda
    • Journal: The Journal of Physical Chemistry C
    • Year: 2011.
  • Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solvent-Free Conditions
    • Authors: A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H. C. Bajaj, A. B. Panda
    • Journal: Applied Catalysis A: General
    • Year: 2010.

Sabu Thomas | Materials Science | Best Researcher Award

Prof. Sabu Thomas | Materials Science | Best Researcher Award

School of Nanoscience and Nanotechnology- India

Author Profile

Early Academic Pursuits 🌱📘

Professor Dr. Sabu Thomas’s illustrious journey in science and research began with an unwavering passion for polymer science and materials engineering. His academic foundation is marked by exceptional achievements, earning him degrees and honors that set the stage for his groundbreaking contributions. He holds prestigious titles such as PhD, FRSC (Fellow of the Royal Society of Chemistry), and multiple DSc degrees from institutions in France and Russia. These accolades underline his dedication to academic excellence and his capacity to navigate complex interdisciplinary domains.

Professional Endeavors and Leadership 🏫🔬

Dr. Sabu Thomas is a full professor of Polymer Science and Engineering at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. Beyond his professorial role, he serves as the Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, where he fosters collaboration and innovation. His work bridges academia and industry, epitomized by his partnership with Apollo Tyres to develop high-performance rubber nanocomposite membranes for automotive applications. This collaboration exemplifies how academia can directly impact industrial advancements.

His research laboratory is a hub of innovation, focusing on state-of-the-art developments in polymer nanocomposites, elastomers, polymer membranes, and green nanotechnology. His initiatives have transformed Mahatma Gandhi University into a global leader in nanoscience and nanotechnology, setting benchmarks for excellence.

Contributions and Research Focus 🌐🧪

Professor Thomas’s research covers a broad spectrum of fields, including polymer nanocomposites, interpenetrating polymer networks, green composites, and nano-biomedical sciences. His innovative work in nanomedicine and green bionanotechnology has led to the creation of new materials with applications ranging from automotive and space exploration to housing and healthcare.

Some of his notable contributions include:

  • Developing barrier rubber nanocomposite membranes for inner tubes and liners in tyres, in collaboration with Apollo Tyres. 🚗
  • Pioneering advances in biomedical applications through nano-biomedical sciences. 🩺🔬
  • Promoting sustainable solutions through green nanotechnology and biodegradable composites. 🌿🌍

His scientific endeavors have had a transformative effect on industries, addressing global challenges with innovative solutions.

Accolades and Recognition 🏆🎓

Dr. Thomas’s extraordinary achievements have garnered him numerous prestigious awards and honors. These include:

  • Fellowship of the Royal Society of Chemistry, London (FRSC). 🏅
  • Nano Tech Medal and the MRSI Medal, recognizing his contributions to nanotechnology and materials research. 🧠✨
  • The Sukumar Maithy Award, celebrating him as the best polymer researcher in India. 🇮🇳
  • Honoris Causa (DSc) from the University of South Brittany, Lorient, France, a testament to his global influence. 🌍📜

His position among the top five most productive researchers in India highlights his unmatched commitment to scientific excellence. His prolific output includes over 700 peer-reviewed publications, 50 co-edited books, and 5 patents, coupled with a remarkable H-index of 75 and nearly 24,107 citations. 📚📈

Impact and Influence 🌟🌏

Professor Thomas’s influence extends far beyond academia. His 73 Ph.D. supervisees have gone on to contribute significantly to science and technology, cementing his legacy as a mentor par excellence. His research has reshaped global perspectives on polymer and nanoscience, introducing solutions that merge sustainability with high performance.

His contributions have not only advanced the scientific community but have also inspired countless young scientists to pursue innovative research. Through 300+ invited and plenary talks in over 30 countries, he continues to share his insights, inspiring collaboration and discovery on a global scale.

Legacy and Future Contributions ✨🚀

Dr. Sabu Thomas’s legacy is characterized by his ability to harmonize academic brilliance with practical applications. His work in polymer science and nanotechnology continues to pave the way for sustainable and cutting-edge advancements. Looking ahead, his focus on green nanotechnology and biomedical innovations promises a future of materials that are not only efficient but also environmentally responsible.

As a visionary leader, he remains committed to fostering a new generation of scientists equipped to address pressing global challenges. His establishment of a world-class research lab at Mahatma Gandhi University ensures that his legacy will endure, driving innovation for decades to come. 🌈🔬

Citations

A total of 74,923 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        74,923
  • h-index          1,878
  • i10-index       121

Notable Publications 

  • Title: Aggregation Induced Emission “Turn on” Ultra-Low Detection of Anti-Inflammatory Drug Flufenamic Acid in Human Urine Samples by Carbon Dots Derived from Bamboo Stem Waste
    Authors: Adaikalapandi, S., Thangadurai, T.D., Sivakumar, S., Kalarikkal, N., Thomas, S.
    Journal: Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy
    Year: 2025.
  • Title: Preparation and Characterization of Coarse Wool Reinforced Natural Rubber Green Composite
    Authors: Jose, S., Shanumon, P.S., Adithyan, S., Bera, S., Francis, N.
    Journal: Industrial Crops and Products
    Year: 2024.
  • Title: Nano Biosensors: Classification, Electrochemistry, Nanostructures, and Optical Properties
    Authors: Rheima, A.M., Al-Sharify, Z.T., Mohaimeed, A.A., Thomas, S., Kianfar, E.
    Journal: Results in Engineering
    Year: 2024.
  • Title: A Review on Green Materials: Exploring the Potential of Poly(Vinyl Alcohol) (PVA) and Nanocellulose Composites
    Authors: Sobhiga, G., Maria, H.J., Mozetič, M., Thomas, S.
    Journal: International Journal of Biological Macromolecules
    Year: 2024.
  • Title: Ultrasound-Alkali-Assisted Isolation of Cellulose from Coconut Shells
    Authors: Mohan, P., Yusof, N.S.M., Thomas, S., Rahman, N.M.M.A.
    Journal: BioResources
    Year: 2024.

Madhavi Dalsaniya | Materials Science | Best Researcher Award

Ms. Madhavi Dalsaniya | Materials Science | Best Researcher Award

Warsaw University of Technology, India

Author Profile

Early Academic Pursuits 🎓

Madhavi H. Dalsaniya’s academic journey is a testament to her dedication and passion for the field of material science. Her formative years in education began at St. Francis High School in Jamnagar, Gujarat, India, where she achieved Distinction in her Secondary Education (2011). This early academic success paved the way for her further pursuit of knowledge in the field of Physics. Madhavi continued her academic endeavors at Sunrise School in Jamnagar, where she completed her Higher Secondary Education in 2013, securing First Class. With a solid foundation in physics, she pursued her undergraduate studies at The Maharaja Sayajirao University of Baroda (MSU), Vadodara, Gujarat, where she earned a B.Sc. in Physics in 2016, finishing with Second Class.Her strong academic performance led her to pursue a Master’s degree in Physics at the same institution, The Maharaja Sayajirao University of Baroda, where she graduated in 2018 with First Class honors. This period of advanced studies sparked her growing interest in Material Science, which later became the focal point of her career. It was during her Master’s that she developed a keen interest in the properties of materials and their potential applications, setting the stage for her future academic endeavors.

Professional Endeavors and Research Focus 🔬

Madhavi H. Dalsaniya’s professional journey has been marked by a steadfast commitment to the study and application of material science. Currently, she is pursuing her Ph.D. in Material Science at the prestigious Warsaw University of Technology in Warszawa, Poland, a position she has held since October 2020. The focus of her doctoral research is on the properties and applications of materials in various fields, contributing to the growing body of knowledge in material science. Her work involves exploring new materials with enhanced properties and understanding their structural characteristics at the atomic and molecular levels.As a doctoral student, Madhavi has not only been working diligently on her research but also actively engaging with the scientific community through academic conferences, seminars, and workshops. She has established herself as a budding researcher in the field, gaining valuable insights and collaborating with experts in the field of material science. Her research contributions focus on novel materials that can be used in a wide array of industries, including electronics, nanotechnology, and renewable energy.

Contributions and Research Focus 🌍

Madhavi’s research is making significant strides in the field of material science. She focuses on advancing the understanding of material properties, which can potentially lead to groundbreaking advancements in various technological applications. Her research encompasses a range of topics, including the study of nanomaterials, their synthesis, characterization, and potential applications in energy storage and conversion systems. By investigating the unique properties of different materials at the microscopic level, Madhavi aims to contribute to the development of more efficient and sustainable materials for future technologies.One of her key research areas is the exploration of new materials with enhanced conductivity and stability for use in electronic devices. She is also interested in the role of nanomaterials in renewable energy, including solar cells and energy storage devices. Through her work, Madhavi aims to push the boundaries of material science and contribute to the creation of more sustainable and efficient solutions for contemporary challenges.

Accolades and Recognition 🏆

Although still early in her career, Madhavi has already earned recognition for her academic achievements and research contributions. Her dedication to the field of material science has not gone unnoticed, and she has been acknowledged for her outstanding performance as a doctoral student. The first-class honors she received during her M.Sc. program laid the foundation for her future academic success. As a Ph.D. student, Madhavi has been invited to present her research at several international conferences, where her work has garnered attention for its originality and scientific rigor.Her involvement in the research community and her commitment to advancing material science have also led to opportunities for collaboration with prominent researchers in her field. Her work has contributed to expanding the knowledge base surrounding the application of nanomaterials in various industries, solidifying her reputation as a promising researcher.

Impact and Influence 🌟

Madhavi H. Dalsaniya’s work is poised to make a lasting impact on the field of material science. By advancing our understanding of the properties of materials, her research is expected to lead to innovations that will drive the development of new technologies. In particular, her exploration of nanomaterials and their potential applications in renewable energy and electronics could play a significant role in addressing some of the world’s most pressing challenges, such as energy storage and climate change.Her influence extends beyond her research contributions, as she serves as a role model for aspiring scientists and researchers, particularly women in STEM fields. Madhavi’s academic journey and perseverance in pursuing advanced research serve as an inspiration to others who seek to contribute to scientific advancements and make a meaningful impact on society.

Legacy and Future Contributions 🌱

Looking toward the future, Madhavi H. Dalsaniya is on track to make significant contributions to the world of material science. As she continues her Ph.D. research, her work will undoubtedly leave a lasting legacy in the field. She aims to continue exploring the applications of new materials in the realms of energy, electronics, and sustainability. The potential for her research to shape future technologies is immense, and she is well-positioned to be a leading figure in the development of novel materials that address global challenges.Madhavi’s commitment to advancing material science, coupled with her passion for research and innovation, ensures that her future contributions will have a profound impact on both the scientific community and society at large. As she progresses in her academic career, her work is expected to inspire future generations of scientists and engineers, making her a key figure in the evolution of material science. 🌍🔬

Citations

A total of 106 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         106
  • h-index           12
  • i10-index        05

Notable Publications 

  • Title: Pressure-Dependent Thermal and Mechanical Behaviour of a Molecular Crystal of Bromine
    Authors: Dalsaniya, M.H., Upadhyay, D., Patel, P., Kurzydłowski, K.J., Kurzydłowski, D.
    Journal: Molecules
    Year: 2024.
  • Title: Exploration of Si-N Compounds as High Energy Density Materials
    Authors: Patel, P., Patel, S., Dalsaniya, M.H., Kurzydłowski, K.J., Jha, P.K.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024.
  • Title: High-Pressure Stabilization of Open-Shell Bromine Fluorides
    Authors: Dalsaniya, M.H., Upadhyay, D., Jan Kurzydłowski, K., Kurzydłowski, D.
    Journal: Physical Chemistry Chemical Physics
    Year: 2023.
  • Title: A Density Functional Theory Study on the Assessment of α-CN and α-CP Monolayers as Anode Material in Li-Ion Batteries
    Authors: Patel, P., Patel, S., Chodvadiya, D., Kurzydłowski, K.J., Jha, P.K.
    Journal: Journal of Energy Storage
    Year: 2023.
  • Title: Defects and Doping Engineered Two-Dimensional o-B2N2 for Hydrogen Evolution Reaction Catalyst: Insights from DFT Simulation
    Authors: Chodvadiya, D., Dalsaniya, M.H., Som, N.N., Kurzydłowski, K.J., Jha, P.K.
    Journal: International Journal of Hydrogen Energy
    Year: 2023.

Govindaraj Sabarees | Material Science | Young Scientist Award

Dr. Govindaraj Sabarees | Material Science | Young Scientist Award

Shri Venkateshwara College of Pharmacy, India

Author Profile

Early Academic Pursuits 🎓

G. Sabarees has consistently shown a strong dedication to the field of pharmacy, starting with his foundational education in B. Pharmacy. He graduated from Sankaralingam Bhuvaneshwari College of Pharmacy in Sivakasi, Tamil Nadu, in 2016, achieving first class honors with a commendable score of 71.0%. This early phase marked his commitment to pharmaceutical sciences and set the stage for his future accomplishments in the field. Driven by an eagerness to explore deeper aspects of pharmaceutical chemistry, he pursued an M. Pharmacy degree at C.L. Baid Metha College of Pharmacy, Chennai. Graduating in 2018 with first-class distinction and a 74.0% score, he solidified his foundational knowledge and gained hands-on expertise in pharmaceutical chemistry, enabling him to specialize further.Following his M. Pharmacy, G. Sabarees embarked on a Ph.D. in Pharmacy at SRM Institute of Science and Technology, one of India’s premier institutions. With his final viva pending for the 2021–2023 academic term, he has shown a tireless commitment to research and academics. His Ph.D. studies have sharpened his analytical skills and expanded his understanding of advanced pharmaceutical sciences, positioning him for impactful research in the field.

Professional Endeavors 🧑‍🔬

In addition to his academic achievements, G. Sabarees gained valuable professional experience by working as a Bioanalytical Research Associate at Amaris Clinical, a division of Caplin Point Laboratories in Chennai. His 14-month tenure here was pivotal, allowing him to bridge the gap between academic learning and industry practice. As a Bioanalytical Research Associate, he honed critical skills in bioanalysis, drug testing, and clinical research—areas essential to pharmaceutical sciences and healthcare. This experience provided him with practical exposure to industry standards, quality control, and regulatory requirements, all of which complement his research work.His professional background extends beyond technical tasks. He has also acquired teaching experience, having guided junior researchers, project assistants, and B. Pharm and M. Pharm scholars in various aspects of research and laboratory techniques. His ability to mentor younger students has enhanced his communication, leadership, and instructional skills, establishing him as a supportive figure in academic settings. Additionally, his proficiency in scientific writing, communicating research findings, and proofreading articles has enabled him to contribute meaningfully to the research community.

Contributions and Research Focus 🔬

G. Sabarees’ research interests primarily revolve around pharmaceutical chemistry, with a particular emphasis on bioanalytical studies. Throughout his academic and professional career, he has focused on developing and refining methods for pharmaceutical analysis and drug formulation, which are critical for ensuring drug safety, efficacy, and quality. His expertise in bioanalysis has contributed significantly to the field, particularly through his work with Amaris Clinical, where he handled complex analytical procedures and assisted in the maintenance and calibration of sensitive laboratory instruments.oreover, G. Sabarees has played an instrumental role in conducting B. Pharm and M. Pharm research projects. His work often involves advanced analytical techniques that facilitate better understanding of drug properties, pharmacokinetics, and pharmacodynamics. By mentoring young scholars, he has also contributed to the academic growth of many future pharmacists and researchers, sharing his knowledge of instrumentation and analytical techniques.

Accolades and Recognition 🏅

Although G. Sabarees is in the early stages of his research career, his achievements reflect his dedication and excellence in pharmaceutical sciences. His first-class scores in both B. Pharmacy and M. Pharmacy are testaments to his academic rigor and commitment to excellence. His role as a Bioanalytical Research Associate and his ongoing Ph.D. research have established him as a rising scholar in his field, earning him recognition from peers and mentors alike.

Impact and Influence 🌍

Through his teaching and mentorship roles, G. Sabarees has had a positive impact on his colleagues and junior researchers. His guidance has not only helped students understand complex pharmaceutical processes but also inspired them to explore research paths in pharmaceutical sciences. His work at Caplin Point Laboratories, particularly in bioanalysis, has contributed to the industry by enhancing the accuracy and reliability of drug testing and analysis. This focus on quality and precision in pharmaceutical analysis is crucial for maintaining public health and safety, adding a layer of responsibility to his contributions.

Legacy and Future Contributions 🌟

Looking forward, G. Sabarees has the potential to make significant contributions to the field of pharmaceutical research and education. His current work in pharmaceutical chemistry, coupled with his experience in bioanalysis, positions him to become a prominent figure in the industry. With plans to further his research and contribute new insights to pharmaceutical chemistry, he aspires to publish his findings in renowned scientific journals, thereby enriching the global body of knowledge in pharmaceutical sciences.In addition, his passion for teaching and mentorship suggests that he will continue to inspire and guide future generations of pharmacists and researchers. Through ongoing contributions to the scientific community, G. Sabarees is poised to leave a lasting legacy in the pharmaceutical field. As he completes his Ph.D. and embarks on new research endeavors, his dedication to advancing pharmaceutical sciences and his commitment to excellence will undoubtedly influence the future of healthcare and drug development.G. Sabarees exemplifies the qualities of a dedicated researcher and mentor. With his strong academic foundation, industry experience, and unwavering commitment to quality, he is well on his way to making lasting contributions to pharmaceutical sciences. His journey thus far reflects both his personal and professional growth, and his future endeavors hold promise for furthering scientific advancements in the pharmaceutical industry.

Citations

A total of 88 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         88
  • h-index           11
  • i10-index        04

Notable Publications 

  • Molecular docking and molecular dynamics simulations discover curcumin analogs as potential wound healing agents
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2024.
  • Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study
    • Authors: Sabarees, G., Velmurugan, V., Gouthaman, S., Solomon, V.R., Kandhasamy, S.
    • Journal: Pharmaceutics
    • Year: 2024.
  • Collagen-based nanofibers: revolutionizing therapeutics for impaired wound healing
    • Authors: Sabarees, G., Vishvaja, S., Raghuraman, S., Solomon, V.R., Padmini Tamilarasi, G.
    • Journal: International Journal of Polymeric Materials and Polymeric Biomaterials
    • Year: 2024.
  • Computational Screening of Some Phytochemicals to Identify Best Modulators for Ligand Binding Domain of Estrogen Receptor Alpha
    • Authors: Alagarsamy, V., Sundar, P.S., Solomon, V.R., Narendhar, B., Sabarees, G.
    • Journal: Current Pharmaceutical Design
    • Year: 2024.
  • Discovery of new naphthyridine hybrids against enoyl-ACP reductase (inhA) protein target of Mycobacterium tuberculosis: Molecular docking, molecular dynamics simulations studies
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2023.

KM Rakhi | Materials Science | Best Researcher Award

Ms. KM Rakhi | Materials Science | Best Researcher Award

Indian Institute of Technology, Ropar, India

Author Profile

Early Academic Pursuits 🎓

Dr. KM Rakhi’s academic journey began with a Bachelor’s degree in Physics, which she completed at D.A.V College, Muzaffarnagar, affiliated with CCS University, Meerut, India, in July 2013. With a strong academic record and a passion for the sciences, she achieved a notable score of 76.7%, which marked the beginning of her journey into the intricate world of physics. Building on her undergraduate foundation, Dr. Rakhi pursued a Master of Science in Physics, graduating with a commendable CGPA of 72.3% in July 2015. This academic path enabled her to gain insights into advanced physics concepts and developed her interest in experimental research, particularly in the realm of condensed matter physics. In 2019, she joined the prestigious Indian Institute of Technology (IIT) Ropar as a PhD candidate, embarking on research in Experimental Condensed Matter Physics under the guidance of eminent faculty members, which culminated in her receiving her PhD in July 2024.

Professional Endeavors 🔬

Dr. Rakhi’s professional journey at IIT Ropar has been marked by extensive teaching and laboratory experience alongside her research. She contributed as a teaching assistant, offering practical training to undergraduate and postgraduate students in various physics courses. Her teaching portfolio spans multiple terms from 2019 to 2022, with courses such as Physics Laboratory (PH 102), Electronics Lab (PH 410), Preparatory Physics (PH 001), and Numerical Methods and Programming (PH 513 and PH 605). Through this hands-on teaching, she shared her knowledge of ion-solid interactions and nanoscale patterning with her students, providing them with a comprehensive and experimental understanding of physics.

Contributions and Research Focus 🔍

At the core of Dr. Rakhi’s work lies her fascination with ion-induced modifications and nanostructuring of solid surfaces. Her primary research explores how energetic ions interact with solid surfaces, creating unique surface morphologies and nanostructures. The study of these nanoscale surface patterns is essential for developing next-generation materials with customized surface properties. Dr. Rakhi’s research examines both the kinetic morphology of surfaces and the dynamics of self-organization of patterns at the nanoscale. These findings aim to contribute to the field by uncovering new pattern scenarios that could intrigue theoretical researchers and expand the fundamental understanding of surface structures. Her goal is to utilize these insights for practical applications, such as in advanced materials engineering where controlled nanoscale patterning can yield materials with exceptional properties in electronics, optics, and catalysis.

Accolades and Recognition 🏅

Dr. Rakhi’s academic rigor and dedicated research have earned her respect and recognition within her academic community. As a Senior Research Fellow in the Department of Physics at IIT Ropar, she has demonstrated a commitment to excellence, evident through her publications, presentations, and contributions to the institute. She has also been active on platforms like ResearchGate, where her research findings and insights contribute to a global dialogue among scholars and practitioners in condensed matter physics and nanotechnology. Through her involvement in academia and research, she has established herself as a promising researcher in ion-solid interaction studies, with her work attracting the attention of peers both within India and internationally.

Impact and Influence 🌍

Dr. Rakhi’s work stands out due to its pioneering exploration of random kinetic morphology and the self-organization of nanoscale surface structures. By probing the intricate patterns that emerge from ion irradiation, her research offers insights that could lead to breakthroughs in controlling and harnessing nanostructured surfaces for high-tech applications. Her influence extends to her students as well, whom she mentors in laboratory and course settings, fostering their curiosity and encouraging the next generation of physicists and material scientists. Her teaching in courses such as Physics Laboratory and Preparatory Physics provides a hands-on learning experience that imparts practical knowledge essential for understanding complex physics concepts.

Legacy and Future Contributions 🌟

Looking ahead, Dr. Rakhi’s contributions to ion-solid interactions and nanoscale patterning have the potential to set a foundation for further advancements in materials science and nanotechnology. Her work on controlled nanoscale structuring could be instrumental in fields like biotechnology, electronics, and energy storage, where the ability to design and manipulate surfaces at the atomic level opens new doors for innovation. She envisions further developing techniques to control surface morphology with even greater precision, which could lead to more practical applications and collaborations across disciplines.As Dr. Rakhi continues her journey in research, she is poised to leave an impactful legacy in experimental condensed matter physics. Her commitment to bridging experimental findings with theoretical insights will likely fuel future collaborations with researchers across the globe. Dr. Rakhi’s research not only adds to the scientific knowledge in her field but also promises to be a cornerstone for future discoveries, inspiring scientists, educators, and students alike to delve deeper into the fascinating world of nanoscale science and materials engineering.

Citations

A total of 19 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        19
  • h-index           6
  • i10-index        2

Notable Publications 

  • Title: “Nanopatterning Induced Si Doping in Amorphous Ga₂O₃ for Enhanced Electrical Properties and Ultra-Fast Photodetection”
    Authors: Kaur, D., Rakhi, Posti, R., Sarkar, S., Kumar, M.
    Journal: Small
    Year: 2024.
  • Title: “Prolonged pattern coarsening in ion irradiated swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Vacuum
    Year: 2024.
  • Title: “Impact of intermittent sputtering on the ordering of triangular surface topography”
    Authors: Rakhi, Sarkar, S.
    Journal: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Year: 2024.
  • Title: “Towards ordered Si surface nanostructuring: role of an intermittent ion beam irradiation approach”
    Authors: Rakhi, Muñoz-García, J., Cuerno, R., Sarkar, S.
    Journal: Physica Scripta
    Year: 2023.
  • Title: “Abrupt pattern transitions in argon ion bombarded swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Physical Review B
    Year: 2022.