Santhosh balaji | Materials Science | Best Researcher Award

Mr. Santhosh balaji | Materials Science | Best Researcher Award

Kalasalingam university, India

Author Profile

🌟 Early Academic Pursuits: 

Santhoshbalaji M’s academic journey began with a strong foundation in physics, fueled by his innate curiosity for understanding the laws of nature. He pursued his B.Sc. in Physics at S.Vellaichamy Nadar College, under the esteemed Madurai Kamaraj University, Tamil Nadu. With a CGPA of 7.87/10, he demonstrated academic rigor and a passion for scientific inquiry.

Building on this foundation, he advanced to complete an M.Sc. in Physics (2017–2019) at the same institution, achieving a commendable CGPA of 7.27/10. These formative years laid the groundwork for his pursuit of specialized research in material science, igniting a profound interest in nanomaterials and photocatalysis. His thirst for knowledge motivated him to embrace research challenges and delve deeper into cutting-edge scientific domains.


🔬 Professional Endeavors:

Santhoshbalaji’s professional journey is marked by his ongoing pursuit of a Ph.D. in Physics at the Kalasalingam Academy of Research and Education, Tamil Nadu. With his thesis focused on surfactant and transition metal-assisted synthesis for photocatalysis, he is advancing our understanding of sustainable materials. His innovative approach combines theoretical expertise with hands-on experimentation, exploring novel synthesis techniques to address real-world environmental challenges.

As an educator and collaborator, Santhoshbalaji has honed his skills in team management, working in multidisciplinary teams to push the boundaries of scientific discovery. His professional endeavors are not confined to the lab; he actively mentors aspiring scientists, instilling in them a passion for innovation and sustainability.


🌍 Contributions and Research Focus:

Santhoshbalaji’s research revolves around nanomaterials and photocatalysis, where he employs advanced synthesis techniques to create materials with exceptional properties. His work on environmental remediation has significant implications for addressing global challenges such as water pollution and energy sustainability.

By integrating transition metals and surfactants, he is pioneering efficient photocatalytic processes for environmental cleanup, including pollutant degradation and wastewater treatment. His contributions to the field extend beyond academic research, showcasing practical applications that align with the global push for sustainability.


🏅 Accolades and Recognition: 

While his formal accolades are yet to reflect his full potential, Santhoshbalaji’s academic achievements, including consistent performance during his undergraduate and postgraduate studies, highlight his dedication. His research endeavors, characterized by originality and environmental relevance, have garnered respect and recognition within academic circles.

Santhoshbalaji’s work promises to lead to impactful publications and collaborations, elevating his status as a researcher committed to excellence. 🌟


✨ Impact and Influence: 

Santhoshbalaji’s influence extends beyond his technical expertise. By mentoring future scientists, he is shaping the next generation of innovators. His emphasis on sustainable practices inspires his peers and students to align their research goals with the pressing needs of our planet.

Through his dedication to collaborative research, he fosters a culture of shared learning and teamwork, demonstrating that the greatest scientific advancements are often the result of collective effort. 🌿


🌠 Legacy and Future Contributions: 

Santhoshbalaji envisions a future where scientific innovation and environmental responsibility go hand in hand. His commitment to sustainable materials positions him as a leader in the field of environmental remediation. In the coming years, he aims to:

  • Publish groundbreaking research on nanomaterials and their applications in energy and environmental science. 📚
  • Collaborate globally to address shared challenges, advancing the impact of his work beyond local boundaries. 🌐
  • Inspire budding researchers to think creatively and contribute to a sustainable future. 🚀

Through his unwavering dedication to material science, Santhoshbalaji M is poised to leave a lasting legacy that transcends academic achievements, driving positive change for generations to come. 🌍✨

Citations

A total of 36 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         36
  • h-index           05
  • i10-index        02

Notable Publications 

  • Title: Nitrogen-doped graphene and iron oxide nanoparticles for photocatalytic degradation
    Authors: Muthuvijayan, S., Banerjee, D., Chatterjee, S., Theivasanthi, T., Gopinath, S.C.B.
    Journal: Journal of the Taiwan Institute of Chemical Engineers
    Year: 2025.
  • Title: Chitosan-mediated tailoring of cadmium sulphide nanoparticle: Synthesis, properties, and interactive mechanisms
    Authors: Muthuvijayan, S., Manavalan, R.K., Ponraj, J.S., Gopinath, S.C.B., Theivasanthi, T.
    Journal: Process Biochemistry
    Year: 2024.
  • Title: Sodium lauryl sulphate-mediated synthesis: Unravelling the optimization path for enhanced stability and optical properties of cadmium sulphide nanoparticles
    Authors: Muthuvijayan, S., Balasubramanian, S., Theivasanthi, T., Gopinath, S.C.B.
    Journal: Process Biochemistry
    Year: 2024.
  • Title: Realization of Ti MOF/MoS2 hybrid nanostructure and their catalytic activity towards 4-nitrophenol reduction
    Authors: Dharman, R.K., Francis, B.M., Ponraj, J.S., Balasubramanian, S., Dhanabalan, S.C.
    Journal: Journal of Materials Research and Technology
    Year: 2022.
  • Title: Facile synthesis and characterisation of green luminescent carbon nanodots prepared from tender coconut water using the acid-assisted ultrasonic route
    Authors: Manoharan, P., Dhanabalan, S.C., Alagan, M., Ponraj, J.S., Somasundaram, C.K.
    Journal: Micro and Nano Letters
    Year: 2020.

Asit Baran Panda | Materials Chemistry | Best Researcher Award

Dr. Asit Baran Panda | Materials Chemistry | Best Researcher Award

CSIR_National Metallurgical Laboratory, India

Author Profile

Early Academic Pursuits 📚

Dr. Asit Baran Panda’s academic journey reflects his unwavering passion for science, especially in chemistry and material science. His foundation was laid with a B.Sc. in Chemistry (Hons.) from Vidyasagar University in 1995, followed by an M.Sc. in Chemistry from Kanpur University in 1998. Dr. Panda’s thirst for advanced knowledge led him to the prestigious Indian Institute of Technology (IIT), Kharagpur, where he completed his Ph.D. in 2004, specializing in nanostructured materials. This robust academic foundation positioned him as a future leader in material science research.

Professional Endeavors 🌍

Dr. Panda currently serves as a Senior Principal Scientist in the Functional Materials Group (FM) of the Advanced Materials and Processes (AMP) Division at CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur. His role involves spearheading cutting-edge research in nanomaterials, energy storage, and environmental solutions. Over the years, he has gained recognition for his innovative work in materials science, contributing significantly to the development of sustainable technologies.

Contributions and Research Focus 🔬

Dr. Panda’s research interests span diverse areas, focusing on the design and synthesis of size, shape, and morphology-selective nanostructured materials. His pioneering efforts include:

  • Energy Conversion and Storage ⚡
    Dr. Panda has made remarkable contributions to the development of Li-ion batteries and capacitors, essential for advancing renewable energy solutions. He has also worked extensively on visible-light-driven photocatalysis for clean energy generation and water splitting to produce sustainable hydrogen fuel.
  • Environmental Remediation 🌱
    He has developed innovative nanostructures for tackling environmental pollutants, contributing to eco-friendly and sustainable solutions.
  • Heterogeneous Catalysis for Green Chemistry ♻️
    Dr. Panda’s work in designing catalysts for green chemical processes aligns with global efforts toward reducing industrial carbon footprints.
  • Inorganic Pigments 🎨
    His expertise extends to inorganic pigments, driving advancements in materials for industrial applications.

Accolades and Recognition 🏆

Dr. Panda’s groundbreaking research has earned him numerous accolades and recognition. As a senior scientist at a leading national research institution, his contributions are widely acknowledged in academic and industrial circles. His innovations have significantly impacted material science and its applications in energy, environment, and industry.

Impact and Influence 🌟

Dr. Panda’s work has had a profound impact on the field of nanomaterials. His advancements in energy storage have the potential to revolutionize the renewable energy sector, enabling efficient and sustainable solutions. Moreover, his contributions to environmental remediation and green chemistry underscore his commitment to addressing pressing global challenges.

Legacy and Future Contributions 🌐

As a researcher, mentor, and innovator, Dr. Panda continues to inspire the next generation of scientists. His vision for creating sustainable and efficient materials aligns with global priorities for clean energy and environmental conservation. Future endeavors may include:

  • Expanding research in graphene-based nanomaterials for multifaceted applications.
  • Developing next-generation materials for solar energy harvesting.
  • Collaborating globally to tackle challenges in environmental sustainability and energy efficiency.

Citations

A total of 7434 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        7434
  • h-index          50
  • i10-index       114

Notable Publications

  • Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo
    • Authors: D. Das, P. Ghosh, A. Ghosh, C. Haldar, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin and Poly(Acrylic Acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin
    • Authors: D. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin Cross Linked with Poly(HEMA): A Novel Hydrogel for Colon-Specific Delivery of Ornidazole
    • Authors: D. Das, R. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: RSC Advances
    • Year: 2013.
  • Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene
    • Authors: N. Sutradhar, A. Sinhamahapatra, S. Pahari, M. Jayachandran, A. B. Panda
    • Journal: The Journal of Physical Chemistry C
    • Year: 2011.
  • Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solvent-Free Conditions
    • Authors: A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H. C. Bajaj, A. B. Panda
    • Journal: Applied Catalysis A: General
    • Year: 2010.

Mohd Arsalan | Material Science | Best Researcher Award

Dr. Mohd Arsalan | Material Science | Best Researcher Award

Aligarh Muslim University, India

Author Profile

Early Academic Pursuits 🌟

Mohd Arsalan’s academic journey began with an unwavering commitment to excellence in the field of chemistry. His passion for science was evident from his early years at Beenapara Inter College, Azamgarh, where he completed his matriculation in 2002, excelling in core subjects like Science, Mathematics, and languages such as Hindi, Urdu, and Arabic. Continuing his pursuit of knowledge, he graduated in 2004 with an intermediate education in Physics, Chemistry, and Biology, laying a strong foundation for his future endeavors.

His higher education took a remarkable turn when he joined the prestigious Aligarh Muslim University (AMU), known for its rich academic heritage. Arsalan earned his Bachelor of Science in Chemistry in 2007, marking the beginning of a transformative journey. This was followed by his Master of Science in Chemistry in 2009, during which he honed his expertise in theoretical and practical aspects of the discipline. His drive for academic excellence led him to complete an M.Phil in Chemistry in 2012 and culminated in his earning a Ph.D. in Chemistry in 2015 from the Department of Chemistry, AMU. His doctoral work stands as a testament to his intellectual rigor and dedication. 📚🎓


Professional Endeavors and Expertise 🚀

With a robust academic background, Mohd Arsalan embarked on a professional journey that merged research with practical applications. His expertise spans diverse domains, including polymeric-inorganic composite materials, membrane technology, and wastewater engineering. These areas reflect his commitment to addressing pressing environmental issues and advancing material science.

Arsalan’s research in water desalination and adsorption technology underscores his focus on solving global challenges related to water scarcity and pollution. His proficiency in synthesizing materials, characterizing them, and applying them in real-world scenarios has placed him at the forefront of innovation. His work often integrates environmental science with advanced separation processes, enabling efficient removal of organic and inorganic pollutants.

He is also adept at composite membrane formation and electrochemical studies, exploring chemical kinetics to drive solutions in wastewater management. Arsalan’s interdisciplinary approach ensures his contributions remain impactful and relevant. 🌍💧


Contributions and Research Focus 🔬

Arsalan has dedicated his career to advancing scientific understanding and developing sustainable technologies. His focus on material synthesis and the creation of composite membranes has led to significant advancements in membrane technology. These membranes are instrumental in purifying water, desalinating seawater, and treating wastewater.

Through meticulous research, he has developed innovative solutions for removing contaminants, including organic and inorganic pollutants, from water systems. His studies in chemical kinetics have provided valuable insights into the reaction mechanisms that drive these purification processes.

Arsalan’s expertise in wastewater engineering has also led to sustainable approaches for industrial waste management. His ability to blend theory with practical applications has made his work highly valuable in academia and industry. 🌱🔗


Accolades and Recognition 🏆

Throughout his career, Mohd Arsalan has been acknowledged for his contributions to science and technology. His research has received recognition from peers and institutions, earning him accolades for his innovative approaches to environmental challenges.

His ability to synthesize polymeric-inorganic composite materials with exceptional properties has been lauded for its practical applications in water and environmental engineering. Arsalan’s scholarly publications, invited talks, and conference presentations showcase his leadership in the scientific community. ✨📜


Impact and Influence 🌐

Arsalan’s work has had a far-reaching impact on academia and industry, influencing practices in water treatment and environmental management. His research has paved the way for cost-effective and sustainable solutions to water pollution, addressing a critical global concern.

By mentoring students and collaborating with other researchers, he continues to inspire the next generation of scientists. His interdisciplinary work bridges chemistry, environmental science, and engineering, ensuring its broad applicability and relevance. 🌟🤝


Legacy and Future Contributions 🔮

Mohd Arsalan’s legacy lies in his contributions to creating sustainable technologies that address environmental challenges. His work in wastewater engineering and membrane technology is a testament to his commitment to innovation.

Looking ahead, Arsalan aims to expand his research into cutting-edge areas like nanotechnology and renewable energy integration in water treatment processes. His vision for a sustainable future drives his relentless pursuit of knowledge and solutions. As an academic and professional, he continues to make a lasting impact on science and society. 🌍💡

In summary, Mohd Arsalan’s journey, marked by academic brilliance, innovative research, and impactful contributions, serves as an inspiration to aspiring scientists. His work is a beacon of hope for a sustainable future, addressing critical challenges with science and ingenuity. ✨

Citations

A total of 112 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        112
  • h-index          19
  • i10-index       06

Notable Publications 

  • Title: Synthesis of Polyvinyl Chloride-Based Zirconium Molybdophosphate Composite Membrane: An Assessment of Experimental and Theoretical Approaches through Electrochemical Parameters
    Authors: Zehra, A., Arsalan, M., Rafiuddin
    Journal: Journal of Membrane Science and Research, 2023.
  • Title: Preparation and characterization of polyvinyl chloride-based nickel phosphate ion-selective membrane and its application for removal of ions through water bodies
    Authors: Arsalan, M., Zehra, A., Khan, M.M.A., Rafiuddin
    Journal: Groundwater for Sustainable Development, 2019.
  • Title: Synthesis and characterization of Co₃(PO₄)₂ and Ni₃(PO₄)₂ composite membranes based on PVC: A comparative electrochemical study through aqueous electrolyte solutions
    Authors: Arsalan, M., Alam, F., Khan, I., Oves, M.
    Journal: Journal of Membrane Science and Research, 2018.

Vimal athithan | Materials Science | Innovation Award

Mr. Vimal athithan | Materials Science | Innovation Award

Kalasalingam academy of research and education, India

Author Profile

Early Academic Pursuits 🎓

Vimal Athithan’s academic journey is a testament to his unwavering commitment to education and personal growth. He began his foundational education at P.R. Siddha Naidu Memorial Matriculation, where he secured 71% in his Standard X examinations. His academic trajectory continued upward during his time at Hindusthan MHSS, Coimbatore, achieving 74% in Standard XII, showcasing his determination and diligence.

Driven by a passion for design and architecture, Vimal pursued a Bachelor of Architecture (B.Arch) at Ranganathan Architecture College, Coimbatore, where he secured a CGPA of 7.06/10. This degree laid the groundwork for his architectural expertise, equipping him with essential technical skills and a creative outlook. Building on this foundation, he enrolled in the Master of Architecture (M.Arch) program specializing in Advanced Design: Sustainable Architecture at the Karpagam Academy of Higher Education, Coimbatore. Graduating with distinction and a gold medal, Vimal earned a CGPA of 8.5/10, emphasizing his aptitude for sustainability and innovation in architecture.

His current academic pursuit, a Doctor of Philosophy (Ph.D.) at the Kalasalingam Academy of Research and Education, Viruthunagar, reflects his dedication to cutting-edge research. Focused on manufacturing composite bricks using neglected plastics, his Ph.D. work exemplifies his resolve to address global sustainability challenges.


Professional Endeavors 🏢

Vimal’s professional journey began immediately after completing his undergraduate studies. He first joined Space Edge Architects, Coimbatore, as a Software Trainer, where he honed his skills in drafting, 3D visualization, and imparting software training. During his tenure, he worked on residential, commercial, and product designs, contributing significantly to innovative walkthroughs and scheme drawings.

He later progressed to a pivotal role as a Junior Architect at Purism Architects, Coimbatore. In this role, Vimal demonstrated his versatility by engaging in diverse responsibilities, including:

  • Drafting and detailing scheme drawings, presentation materials, and cost estimations.
  • Producing high-quality 3D visualizations for various projects.
  • Overseeing site management, which involved site marking, inspections, and material evaluation.
  • Managing accounts and mentoring new recruits.

His experience in these roles reflects his adaptability, technical prowess, and leadership skills.


Contributions and Research Focus 🌍

Vimal’s research embodies his commitment to sustainability and innovation. His ongoing Ph.D. research focuses on developing composite bricks from neglected plastics, a project with significant environmental and industrial implications. By addressing plastic waste challenges, his work contributes to the circular economy and supports eco-friendly construction practices.

In addition to his academic pursuits, Vimal is currently working on patent registration for his composite brick design. This milestone underlines his innovative approach to solving real-world problems and reinforces his position as a thought leader in sustainable architecture.


Accolades and Recognition 🏅

Throughout his academic and professional journey, Vimal’s efforts have been met with recognition and accolades. His gold medal distinction during his M.Arch program highlights his academic excellence. Moreover, his contributions to sustainable architecture through research and practical application have earned him respect in both academic and professional circles.

His proficiency in software tools such as AutoCAD, Sketchup, Rhino, and Autodesk Sketchbook has also added to his professional acclaim, enabling him to bring creative and efficient solutions to architectural challenges.


Impact and Influence 🌟

Vimal’s work has left a lasting impression on both his peers and the architectural community. His contributions to sustainable construction are particularly impactful in the context of growing environmental concerns. His composite brick research aligns with global sustainability goals, providing practical solutions to reduce plastic waste and promote eco-friendly practices in the construction industry.

As a mentor and trainer, Vimal has also inspired budding architects by sharing his expertise in drafting, visualization, and software applications. His ability to manage projects while fostering the growth of others speaks volumes about his leadership and collaborative spirit.


Legacy and Future Contributions 🚀

Looking ahead, Vimal Athithan aspires to further his contributions to sustainable architecture and research. His work on composite bricks has the potential to revolutionize the construction industry, offering innovative alternatives to traditional materials. By securing patents for his designs, he is poised to make significant advancements in eco-friendly construction technologies.

Vimal’s commitment to education, research, and sustainability ensures that his legacy will be one of innovation, inspiration, and environmental stewardship. His journey serves as a beacon for aspiring architects, emphasizing the importance of balancing creativity with responsibility in shaping a better future.

In conclusion, Vimal Athithan’s story is one of relentless pursuit of knowledge, professional excellence, and meaningful impact. His dedication to sustainability and innovation, coupled with his ability to inspire and lead, ensures that his contributions will resonate for generations to come. 🌱✨

Madhavi Dalsaniya | Materials Science | Best Researcher Award

Ms. Madhavi Dalsaniya | Materials Science | Best Researcher Award

Warsaw University of Technology, India

Author Profile

Early Academic Pursuits 🎓

Madhavi H. Dalsaniya’s academic journey is a testament to her dedication and passion for the field of material science. Her formative years in education began at St. Francis High School in Jamnagar, Gujarat, India, where she achieved Distinction in her Secondary Education (2011). This early academic success paved the way for her further pursuit of knowledge in the field of Physics. Madhavi continued her academic endeavors at Sunrise School in Jamnagar, where she completed her Higher Secondary Education in 2013, securing First Class. With a solid foundation in physics, she pursued her undergraduate studies at The Maharaja Sayajirao University of Baroda (MSU), Vadodara, Gujarat, where she earned a B.Sc. in Physics in 2016, finishing with Second Class.Her strong academic performance led her to pursue a Master’s degree in Physics at the same institution, The Maharaja Sayajirao University of Baroda, where she graduated in 2018 with First Class honors. This period of advanced studies sparked her growing interest in Material Science, which later became the focal point of her career. It was during her Master’s that she developed a keen interest in the properties of materials and their potential applications, setting the stage for her future academic endeavors.

Professional Endeavors and Research Focus 🔬

Madhavi H. Dalsaniya’s professional journey has been marked by a steadfast commitment to the study and application of material science. Currently, she is pursuing her Ph.D. in Material Science at the prestigious Warsaw University of Technology in Warszawa, Poland, a position she has held since October 2020. The focus of her doctoral research is on the properties and applications of materials in various fields, contributing to the growing body of knowledge in material science. Her work involves exploring new materials with enhanced properties and understanding their structural characteristics at the atomic and molecular levels.As a doctoral student, Madhavi has not only been working diligently on her research but also actively engaging with the scientific community through academic conferences, seminars, and workshops. She has established herself as a budding researcher in the field, gaining valuable insights and collaborating with experts in the field of material science. Her research contributions focus on novel materials that can be used in a wide array of industries, including electronics, nanotechnology, and renewable energy.

Contributions and Research Focus 🌍

Madhavi’s research is making significant strides in the field of material science. She focuses on advancing the understanding of material properties, which can potentially lead to groundbreaking advancements in various technological applications. Her research encompasses a range of topics, including the study of nanomaterials, their synthesis, characterization, and potential applications in energy storage and conversion systems. By investigating the unique properties of different materials at the microscopic level, Madhavi aims to contribute to the development of more efficient and sustainable materials for future technologies.One of her key research areas is the exploration of new materials with enhanced conductivity and stability for use in electronic devices. She is also interested in the role of nanomaterials in renewable energy, including solar cells and energy storage devices. Through her work, Madhavi aims to push the boundaries of material science and contribute to the creation of more sustainable and efficient solutions for contemporary challenges.

Accolades and Recognition 🏆

Although still early in her career, Madhavi has already earned recognition for her academic achievements and research contributions. Her dedication to the field of material science has not gone unnoticed, and she has been acknowledged for her outstanding performance as a doctoral student. The first-class honors she received during her M.Sc. program laid the foundation for her future academic success. As a Ph.D. student, Madhavi has been invited to present her research at several international conferences, where her work has garnered attention for its originality and scientific rigor.Her involvement in the research community and her commitment to advancing material science have also led to opportunities for collaboration with prominent researchers in her field. Her work has contributed to expanding the knowledge base surrounding the application of nanomaterials in various industries, solidifying her reputation as a promising researcher.

Impact and Influence 🌟

Madhavi H. Dalsaniya’s work is poised to make a lasting impact on the field of material science. By advancing our understanding of the properties of materials, her research is expected to lead to innovations that will drive the development of new technologies. In particular, her exploration of nanomaterials and their potential applications in renewable energy and electronics could play a significant role in addressing some of the world’s most pressing challenges, such as energy storage and climate change.Her influence extends beyond her research contributions, as she serves as a role model for aspiring scientists and researchers, particularly women in STEM fields. Madhavi’s academic journey and perseverance in pursuing advanced research serve as an inspiration to others who seek to contribute to scientific advancements and make a meaningful impact on society.

Legacy and Future Contributions 🌱

Looking toward the future, Madhavi H. Dalsaniya is on track to make significant contributions to the world of material science. As she continues her Ph.D. research, her work will undoubtedly leave a lasting legacy in the field. She aims to continue exploring the applications of new materials in the realms of energy, electronics, and sustainability. The potential for her research to shape future technologies is immense, and she is well-positioned to be a leading figure in the development of novel materials that address global challenges.Madhavi’s commitment to advancing material science, coupled with her passion for research and innovation, ensures that her future contributions will have a profound impact on both the scientific community and society at large. As she progresses in her academic career, her work is expected to inspire future generations of scientists and engineers, making her a key figure in the evolution of material science. 🌍🔬

Citations

A total of 106 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         106
  • h-index           12
  • i10-index        05

Notable Publications 

  • Title: Pressure-Dependent Thermal and Mechanical Behaviour of a Molecular Crystal of Bromine
    Authors: Dalsaniya, M.H., Upadhyay, D., Patel, P., Kurzydłowski, K.J., Kurzydłowski, D.
    Journal: Molecules
    Year: 2024.
  • Title: Exploration of Si-N Compounds as High Energy Density Materials
    Authors: Patel, P., Patel, S., Dalsaniya, M.H., Kurzydłowski, K.J., Jha, P.K.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024.
  • Title: High-Pressure Stabilization of Open-Shell Bromine Fluorides
    Authors: Dalsaniya, M.H., Upadhyay, D., Jan Kurzydłowski, K., Kurzydłowski, D.
    Journal: Physical Chemistry Chemical Physics
    Year: 2023.
  • Title: A Density Functional Theory Study on the Assessment of α-CN and α-CP Monolayers as Anode Material in Li-Ion Batteries
    Authors: Patel, P., Patel, S., Chodvadiya, D., Kurzydłowski, K.J., Jha, P.K.
    Journal: Journal of Energy Storage
    Year: 2023.
  • Title: Defects and Doping Engineered Two-Dimensional o-B2N2 for Hydrogen Evolution Reaction Catalyst: Insights from DFT Simulation
    Authors: Chodvadiya, D., Dalsaniya, M.H., Som, N.N., Kurzydłowski, K.J., Jha, P.K.
    Journal: International Journal of Hydrogen Energy
    Year: 2023.

Govindaraj Sabarees | Material Science | Young Scientist Award

Dr. Govindaraj Sabarees | Material Science | Young Scientist Award

Shri Venkateshwara College of Pharmacy, India

Author Profile

Early Academic Pursuits 🎓

G. Sabarees has consistently shown a strong dedication to the field of pharmacy, starting with his foundational education in B. Pharmacy. He graduated from Sankaralingam Bhuvaneshwari College of Pharmacy in Sivakasi, Tamil Nadu, in 2016, achieving first class honors with a commendable score of 71.0%. This early phase marked his commitment to pharmaceutical sciences and set the stage for his future accomplishments in the field. Driven by an eagerness to explore deeper aspects of pharmaceutical chemistry, he pursued an M. Pharmacy degree at C.L. Baid Metha College of Pharmacy, Chennai. Graduating in 2018 with first-class distinction and a 74.0% score, he solidified his foundational knowledge and gained hands-on expertise in pharmaceutical chemistry, enabling him to specialize further.Following his M. Pharmacy, G. Sabarees embarked on a Ph.D. in Pharmacy at SRM Institute of Science and Technology, one of India’s premier institutions. With his final viva pending for the 2021–2023 academic term, he has shown a tireless commitment to research and academics. His Ph.D. studies have sharpened his analytical skills and expanded his understanding of advanced pharmaceutical sciences, positioning him for impactful research in the field.

Professional Endeavors 🧑‍🔬

In addition to his academic achievements, G. Sabarees gained valuable professional experience by working as a Bioanalytical Research Associate at Amaris Clinical, a division of Caplin Point Laboratories in Chennai. His 14-month tenure here was pivotal, allowing him to bridge the gap between academic learning and industry practice. As a Bioanalytical Research Associate, he honed critical skills in bioanalysis, drug testing, and clinical research—areas essential to pharmaceutical sciences and healthcare. This experience provided him with practical exposure to industry standards, quality control, and regulatory requirements, all of which complement his research work.His professional background extends beyond technical tasks. He has also acquired teaching experience, having guided junior researchers, project assistants, and B. Pharm and M. Pharm scholars in various aspects of research and laboratory techniques. His ability to mentor younger students has enhanced his communication, leadership, and instructional skills, establishing him as a supportive figure in academic settings. Additionally, his proficiency in scientific writing, communicating research findings, and proofreading articles has enabled him to contribute meaningfully to the research community.

Contributions and Research Focus 🔬

G. Sabarees’ research interests primarily revolve around pharmaceutical chemistry, with a particular emphasis on bioanalytical studies. Throughout his academic and professional career, he has focused on developing and refining methods for pharmaceutical analysis and drug formulation, which are critical for ensuring drug safety, efficacy, and quality. His expertise in bioanalysis has contributed significantly to the field, particularly through his work with Amaris Clinical, where he handled complex analytical procedures and assisted in the maintenance and calibration of sensitive laboratory instruments.oreover, G. Sabarees has played an instrumental role in conducting B. Pharm and M. Pharm research projects. His work often involves advanced analytical techniques that facilitate better understanding of drug properties, pharmacokinetics, and pharmacodynamics. By mentoring young scholars, he has also contributed to the academic growth of many future pharmacists and researchers, sharing his knowledge of instrumentation and analytical techniques.

Accolades and Recognition 🏅

Although G. Sabarees is in the early stages of his research career, his achievements reflect his dedication and excellence in pharmaceutical sciences. His first-class scores in both B. Pharmacy and M. Pharmacy are testaments to his academic rigor and commitment to excellence. His role as a Bioanalytical Research Associate and his ongoing Ph.D. research have established him as a rising scholar in his field, earning him recognition from peers and mentors alike.

Impact and Influence 🌍

Through his teaching and mentorship roles, G. Sabarees has had a positive impact on his colleagues and junior researchers. His guidance has not only helped students understand complex pharmaceutical processes but also inspired them to explore research paths in pharmaceutical sciences. His work at Caplin Point Laboratories, particularly in bioanalysis, has contributed to the industry by enhancing the accuracy and reliability of drug testing and analysis. This focus on quality and precision in pharmaceutical analysis is crucial for maintaining public health and safety, adding a layer of responsibility to his contributions.

Legacy and Future Contributions 🌟

Looking forward, G. Sabarees has the potential to make significant contributions to the field of pharmaceutical research and education. His current work in pharmaceutical chemistry, coupled with his experience in bioanalysis, positions him to become a prominent figure in the industry. With plans to further his research and contribute new insights to pharmaceutical chemistry, he aspires to publish his findings in renowned scientific journals, thereby enriching the global body of knowledge in pharmaceutical sciences.In addition, his passion for teaching and mentorship suggests that he will continue to inspire and guide future generations of pharmacists and researchers. Through ongoing contributions to the scientific community, G. Sabarees is poised to leave a lasting legacy in the pharmaceutical field. As he completes his Ph.D. and embarks on new research endeavors, his dedication to advancing pharmaceutical sciences and his commitment to excellence will undoubtedly influence the future of healthcare and drug development.G. Sabarees exemplifies the qualities of a dedicated researcher and mentor. With his strong academic foundation, industry experience, and unwavering commitment to quality, he is well on his way to making lasting contributions to pharmaceutical sciences. His journey thus far reflects both his personal and professional growth, and his future endeavors hold promise for furthering scientific advancements in the pharmaceutical industry.

Citations

A total of 88 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         88
  • h-index           11
  • i10-index        04

Notable Publications 

  • Molecular docking and molecular dynamics simulations discover curcumin analogs as potential wound healing agents
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2024.
  • Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study
    • Authors: Sabarees, G., Velmurugan, V., Gouthaman, S., Solomon, V.R., Kandhasamy, S.
    • Journal: Pharmaceutics
    • Year: 2024.
  • Collagen-based nanofibers: revolutionizing therapeutics for impaired wound healing
    • Authors: Sabarees, G., Vishvaja, S., Raghuraman, S., Solomon, V.R., Padmini Tamilarasi, G.
    • Journal: International Journal of Polymeric Materials and Polymeric Biomaterials
    • Year: 2024.
  • Computational Screening of Some Phytochemicals to Identify Best Modulators for Ligand Binding Domain of Estrogen Receptor Alpha
    • Authors: Alagarsamy, V., Sundar, P.S., Solomon, V.R., Narendhar, B., Sabarees, G.
    • Journal: Current Pharmaceutical Design
    • Year: 2024.
  • Discovery of new naphthyridine hybrids against enoyl-ACP reductase (inhA) protein target of Mycobacterium tuberculosis: Molecular docking, molecular dynamics simulations studies
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2023.

KM Rakhi | Materials Science | Best Researcher Award

Ms. KM Rakhi | Materials Science | Best Researcher Award

Indian Institute of Technology, Ropar, India

Author Profile

Early Academic Pursuits 🎓

Dr. KM Rakhi’s academic journey began with a Bachelor’s degree in Physics, which she completed at D.A.V College, Muzaffarnagar, affiliated with CCS University, Meerut, India, in July 2013. With a strong academic record and a passion for the sciences, she achieved a notable score of 76.7%, which marked the beginning of her journey into the intricate world of physics. Building on her undergraduate foundation, Dr. Rakhi pursued a Master of Science in Physics, graduating with a commendable CGPA of 72.3% in July 2015. This academic path enabled her to gain insights into advanced physics concepts and developed her interest in experimental research, particularly in the realm of condensed matter physics. In 2019, she joined the prestigious Indian Institute of Technology (IIT) Ropar as a PhD candidate, embarking on research in Experimental Condensed Matter Physics under the guidance of eminent faculty members, which culminated in her receiving her PhD in July 2024.

Professional Endeavors 🔬

Dr. Rakhi’s professional journey at IIT Ropar has been marked by extensive teaching and laboratory experience alongside her research. She contributed as a teaching assistant, offering practical training to undergraduate and postgraduate students in various physics courses. Her teaching portfolio spans multiple terms from 2019 to 2022, with courses such as Physics Laboratory (PH 102), Electronics Lab (PH 410), Preparatory Physics (PH 001), and Numerical Methods and Programming (PH 513 and PH 605). Through this hands-on teaching, she shared her knowledge of ion-solid interactions and nanoscale patterning with her students, providing them with a comprehensive and experimental understanding of physics.

Contributions and Research Focus 🔍

At the core of Dr. Rakhi’s work lies her fascination with ion-induced modifications and nanostructuring of solid surfaces. Her primary research explores how energetic ions interact with solid surfaces, creating unique surface morphologies and nanostructures. The study of these nanoscale surface patterns is essential for developing next-generation materials with customized surface properties. Dr. Rakhi’s research examines both the kinetic morphology of surfaces and the dynamics of self-organization of patterns at the nanoscale. These findings aim to contribute to the field by uncovering new pattern scenarios that could intrigue theoretical researchers and expand the fundamental understanding of surface structures. Her goal is to utilize these insights for practical applications, such as in advanced materials engineering where controlled nanoscale patterning can yield materials with exceptional properties in electronics, optics, and catalysis.

Accolades and Recognition 🏅

Dr. Rakhi’s academic rigor and dedicated research have earned her respect and recognition within her academic community. As a Senior Research Fellow in the Department of Physics at IIT Ropar, she has demonstrated a commitment to excellence, evident through her publications, presentations, and contributions to the institute. She has also been active on platforms like ResearchGate, where her research findings and insights contribute to a global dialogue among scholars and practitioners in condensed matter physics and nanotechnology. Through her involvement in academia and research, she has established herself as a promising researcher in ion-solid interaction studies, with her work attracting the attention of peers both within India and internationally.

Impact and Influence 🌍

Dr. Rakhi’s work stands out due to its pioneering exploration of random kinetic morphology and the self-organization of nanoscale surface structures. By probing the intricate patterns that emerge from ion irradiation, her research offers insights that could lead to breakthroughs in controlling and harnessing nanostructured surfaces for high-tech applications. Her influence extends to her students as well, whom she mentors in laboratory and course settings, fostering their curiosity and encouraging the next generation of physicists and material scientists. Her teaching in courses such as Physics Laboratory and Preparatory Physics provides a hands-on learning experience that imparts practical knowledge essential for understanding complex physics concepts.

Legacy and Future Contributions 🌟

Looking ahead, Dr. Rakhi’s contributions to ion-solid interactions and nanoscale patterning have the potential to set a foundation for further advancements in materials science and nanotechnology. Her work on controlled nanoscale structuring could be instrumental in fields like biotechnology, electronics, and energy storage, where the ability to design and manipulate surfaces at the atomic level opens new doors for innovation. She envisions further developing techniques to control surface morphology with even greater precision, which could lead to more practical applications and collaborations across disciplines.As Dr. Rakhi continues her journey in research, she is poised to leave an impactful legacy in experimental condensed matter physics. Her commitment to bridging experimental findings with theoretical insights will likely fuel future collaborations with researchers across the globe. Dr. Rakhi’s research not only adds to the scientific knowledge in her field but also promises to be a cornerstone for future discoveries, inspiring scientists, educators, and students alike to delve deeper into the fascinating world of nanoscale science and materials engineering.

Citations

A total of 19 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        19
  • h-index           6
  • i10-index        2

Notable Publications 

  • Title: “Nanopatterning Induced Si Doping in Amorphous Ga₂O₃ for Enhanced Electrical Properties and Ultra-Fast Photodetection”
    Authors: Kaur, D., Rakhi, Posti, R., Sarkar, S., Kumar, M.
    Journal: Small
    Year: 2024.
  • Title: “Prolonged pattern coarsening in ion irradiated swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Vacuum
    Year: 2024.
  • Title: “Impact of intermittent sputtering on the ordering of triangular surface topography”
    Authors: Rakhi, Sarkar, S.
    Journal: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Year: 2024.
  • Title: “Towards ordered Si surface nanostructuring: role of an intermittent ion beam irradiation approach”
    Authors: Rakhi, Muñoz-García, J., Cuerno, R., Sarkar, S.
    Journal: Physica Scripta
    Year: 2023.
  • Title: “Abrupt pattern transitions in argon ion bombarded swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Physical Review B
    Year: 2022.

Konduru Ashok Kumar Raju | Materials Science | Young Scientist Award

Dr. Konduru Ashok Kumar Raju - Materials Science - Young Scientist Award 🏆 

National Institute of Technology Rourkela - India

Professional Profiles

Early Academic Pursuits

He embarked on his academic journey with a Bachelor's degree in Mechanical Engineering from Jawaharlal Nehru Technological University, Anantapur, where he delved into research on heat transfer and computational fluid dynamics (CFD) analysis. He further pursued a Master's degree specializing in CAD/CAM and Material Science & Engineering, focusing on modeling and analysis of human organs using finite element analysis. His academic pursuits culminated in a Ph.D. from the National Institute of Technology, Rourkela, with a research emphasis on Biomaterials in the domain of Material Science & Engineering.

Professional Endeavors

With over five years of teaching experience post-graduation, he has significantly contributed to academia. He served as an Assistant Professor in Mechanical Engineering Departments at prestigious institutions, including JNTUA College of Engineering and Sri Krishnadevaraya Engineering College. Alongside teaching, he actively engaged in research, writing, and reviewing research papers, articles, and books. His expertise extends to conducting workshops, counseling sessions, and delivering motivational public talks.

Contributions and Research Focus in Materials Science

His research primarily revolves around Materials Science, Nanotechnology, and Biomaterials. His Ph.D. research focused on developing functionalized coatings on Ti6Al4V through surface modification to enhance corrosion resistance and biocompatibility, a crucial area in biomedical engineering. Additionally, his work encompasses semiconductor physics and surface engineering, contributing to advancements in various industrial sectors.

Materials science lies at the heart of technological advancements, playing a pivotal role in various industries such as electronics, aerospace, healthcare, and energy. Researchers in materials science investigate the fundamental properties of materials at the atomic and molecular levels, aiming to tailor their characteristics to meet specific performance requirements.

Accolades and Recognition

His academic achievements have been recognized with prestigious awards and honors. He received the Sir M. Visveswaraya Best Engineering National Award from the National Institute for Socio-Economic Development, Bangalore, acknowledging his outstanding contributions. Moreover, he has been the recipient of the State Council of Higher Education, Andhra Pradesh, Postgraduate Scholarship, and currently holds a Fellowship sponsored by the Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela.

Impact and Influence

Through his scientific peer reviews for esteemed journals like Elsevier, Wiley, and Sage Publications, he has played a pivotal role in shaping the discourse of scientific research. His membership in professional organizations such as the Indian Society for Technical Education (ISTE) and the Society for Biomaterials and Artificial Organs (SBAOI) reflects his commitment to the advancement of scientific knowledge and collaboration within the academic community.

Legacy and Future Contributions

His legacy lies in his dedication to advancing knowledge in Materials Science and related disciplines. His research endeavors, coupled with his teaching and mentoring roles, have inspired future generations of scientists and engineers. As he continues his journey, he aims to make significant contributions to the field, furthering our understanding of Materials Science, Nanotechnology, and Biomaterials for the betterment of society and technological innovation.

Citations

  • Citations              37
  • h-index                 4

Notable Publications

Manjinder Singh | Materials Science | Best Researcher Award

Manjinder Singh - Best Researcher Award - Award Winner 2023🏆

Mr. Manjinder Singh : Materials Science

Congratulations, Mr. Manjinder Singh, on winning the esteemed Best Researcher Award from Research! Your dedication, innovative research, and scholarly contributions have truly made a significant impact in your field. Your commitment to advancing knowledge and pushing the boundaries of research is commendable. Here's to your continued success in shaping the future of academia and making invaluable contributions to your field. Well done!

He was an active Ph.D. scholar at the Department of Polymer and Process Engineering at IIT Roorkee, Uttarakhand, India. His research focus predominantly centered on the development of bio-based pressure-sensitive adhesives (PSAs) within the realm of Material Science and Technology, showcasing a blend of theoretical and experimental approaches. His interdisciplinary research interests encompassed areas like polymeric biomaterials, smart polymeric materials, molecular dynamics simulations, healthcare adhesives, and their applications in food packaging.

Professional Profiles:

Early Academic Pursuits :

He embarked on his academic journey with a B.Tech. in Mechanical Engineering from Punjab Technical University, displaying a strong foundation in engineering principles. Following this, he pursued an M.Tech. in Materials Science and Technology from the Indian Institute of Space Science & Technology, exhibiting a shift towards materials and their applications. His scholarly interests in polymers and their multifaceted functionalities led him to his current Ph.D. pursuit at the Indian Institute of Technology Roorkee, exploring innovative paths in Polymer and Process Engineering.

Professional Endeavors :

His professional trajectory commenced with an internship as a Quality Engineer at Majestic Auto Limited, Ludhiana, where he actively engaged in refining component quality within specific timelines. This industrial stint offered valuable hands-on experience, aligning with his academic pursuits. This blend of theoretical expertise and practical exposure provided a holistic understanding of material properties, quality enhancement, and industrial applications.

Contributions and Research Focus in Materials Science :

His research endeavors have primarily revolved around the development of bio-based pressure-sensitive adhesives, blending theoretical frameworks with experimental methodologies. Manjinder has showcased an interdisciplinary approach by incorporating computational studies with experimental investigations, focusing on smart polymeric materials, biomaterials, and their diverse applications in healthcare and food packaging adhesives. Notably, his work on mutlistimuli-responsive polymeric materials for potential sensor applications during his M.Tech. program underscored his innovation in this domain.

Accolades and Recognition :

He has been the recipient of esteemed awards and fellowships, including the Commonwealth Split-site Scholarship (UK) and prestigious research fellowships awarded by the Ministry of Education in India. His academic excellence, demonstrated by a remarkable CGPA throughout his academic journey, has been recognized through GATE M.Tech. Fellowship and senior research fellowships.

Impact and Influence :

His patent for a solvent-free method to synthesize bio-based pressure-sensitive adhesives (PSAs) stands as a testament to his innovative contributions in material synthesis and applications. His involvement in workshops, both as a participant and attendee, signifies his commitment to continuous learning and staying abreast of advancements in his field.

Legacy and Future Contributions :

His legacy lies in his dedication to pioneering research in Polymer Science, specifically in developing sustainable and efficient materials for diverse applications. His interdisciplinary approach, encompassing theoretical, computational, and experimental facets, is poised to leave a lasting impact on the field. As he continues his academic journey, His commitment to innovation and his contributions to the realm of materials science are set to pave the way for novel advancements and applications in the domain.

Notable Publications :

Citations:

A total of  317 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    159           158
  • h-index        6                6
  • i10-index     4                4

Amaresh Sahoo | Materials Science | Best Researcher Award

Amaresh Sahoo | Best Researcher Award Winner 2023🏆

Dr. Amaresh Sahoo :  Materials Science

Dr. Amaresh Sahoo is an Assistant Professor at the Indian Institute of Information Technology Allahabad (IIIT Allahabad).

Congratulations, Dr. Amaresh Sahoo, on winning the esteemed Best Researcher Award from Research! Your dedication, innovative research, and scholarly contributions have truly made a significant impact in your field. Your commitment to advancing knowledge and pushing the boundaries of research is commendable. Here's to your continued success in shaping the future of academia and making invaluable contributions to your field. Well done!

He holds the esteemed position of an Assistant Professor in the Department of Applied Sciences at the Indian Institute of Information Technology Allahabad (IIIT Allahabad). Joining the institution in January 2016, he continues to contribute significantly to academia and the field of nanobiotechnology. His current responsibilities encompass the dissemination of knowledge, mentorship of aspiring students, and the pursuit of cutting-edge research. Dr. Sahoo's expertise lies in the development and application of nanocomposites for theranostic purposes, an area of research where he has made substantial strides. His dedicated efforts in this domain not only enrich the academic landscape but also hold promise for breakthroughs in diagnostic and therapeutic advancements in healthcare. His ongoing commitment to research and education underscores his passion for advancing the frontiers of nanobiotechnology, fostering a legacy of innovation and excellence within the scientific community.

Professional Profiles:

Early Academic Pursuits :

He pursued his Bachelor's degree in Biotechnology from West Bengal University of Technology in 2005, securing an impressive 8.54/10 GPA. Subsequently, he pursued an Advanced PG Diploma in Bioinformatics from Calcutta University in 2007, achieving a commendable score of 65.3%. His academic journey culminated in a Ph.D. in Nanobiotechnology from IIT Guwahati in 2015, where his thesis focused on "Nanocomposites for Theranostic Applications" under the guidance of Prof. Siddhartha Sankar Ghosh and Prof. Arun Chattopadhyay.

Professional Endeavors :

He embarked on his professional journey as a Post-Doctoral Fellow at Chapman University, USA, exhibiting a dedication to further his research and expertise in nanobiotechnology. Subsequently, he joined the esteemed Indian Institute of Information Technology Allahabad (IIIT Allahabad) in 2016 as an Assistant Professor, where he has been contributing significantly to academia.

Contributions and Research Focus in Materials Science:

His research primarily revolves around nanobiotechnology, specifically focusing on the development and application of nanocomposites for theranostic purposes. Dr. Sahoo's work explores innovative methodologies that amalgamate nanotechnology and biotechnology for enhanced diagnostic and therapeutic applications.

Accolades and Recognition :

His academic prowess and research contributions have been acknowledged through various accolades. Notably, he qualified in the Graduate Aptitude Test in Engineering (GATE) in 2009. Additionally, his exceptional work was honored with the "Best Poster Award" at the International Symposium on Advances in Nanomaterials (ANM 2010) organized by the Central Glass and Ceramic Research Institute (CGCRI), Kolkata, India, in 2010. Furthermore, he received another "Best Poster Award" in the International Conference on Advances in Biopolymers and Composites in 2022.

Impact and Influence :

His contributions in nanobiotechnology have had a significant impact on the scientific community, showcasing the potential of nanocomposites in theranostic applications. His research and teachings have likely inspired numerous students and researchers in the field, contributing to advancements and applications in healthcare and technology.

Legacy and Future Contributions :

His legacy is marked by his pioneering work in the development and utilization of nanocomposites for therapeutic and diagnostic purposes. His ongoing dedication and commitment to the field of nanobiotechnology promise future contributions that could potentially revolutionize the realms of healthcare, nanotechnology, and biomedicine.

Notable Publications :

Citations:

A total of  3060 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    1620    1440
  • h-index       19         18
  • i10-index    35         31