Asit Baran Panda | Materials Chemistry | Best Researcher Award

Dr. Asit Baran Panda | Materials Chemistry | Best Researcher Award

CSIR_National Metallurgical Laboratory, India

Author Profile

Early Academic Pursuits 📚

Dr. Asit Baran Panda’s academic journey reflects his unwavering passion for science, especially in chemistry and material science. His foundation was laid with a B.Sc. in Chemistry (Hons.) from Vidyasagar University in 1995, followed by an M.Sc. in Chemistry from Kanpur University in 1998. Dr. Panda’s thirst for advanced knowledge led him to the prestigious Indian Institute of Technology (IIT), Kharagpur, where he completed his Ph.D. in 2004, specializing in nanostructured materials. This robust academic foundation positioned him as a future leader in material science research.

Professional Endeavors 🌍

Dr. Panda currently serves as a Senior Principal Scientist in the Functional Materials Group (FM) of the Advanced Materials and Processes (AMP) Division at CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur. His role involves spearheading cutting-edge research in nanomaterials, energy storage, and environmental solutions. Over the years, he has gained recognition for his innovative work in materials science, contributing significantly to the development of sustainable technologies.

Contributions and Research Focus 🔬

Dr. Panda’s research interests span diverse areas, focusing on the design and synthesis of size, shape, and morphology-selective nanostructured materials. His pioneering efforts include:

  • Energy Conversion and Storage ⚡
    Dr. Panda has made remarkable contributions to the development of Li-ion batteries and capacitors, essential for advancing renewable energy solutions. He has also worked extensively on visible-light-driven photocatalysis for clean energy generation and water splitting to produce sustainable hydrogen fuel.
  • Environmental Remediation 🌱
    He has developed innovative nanostructures for tackling environmental pollutants, contributing to eco-friendly and sustainable solutions.
  • Heterogeneous Catalysis for Green Chemistry ♻️
    Dr. Panda’s work in designing catalysts for green chemical processes aligns with global efforts toward reducing industrial carbon footprints.
  • Inorganic Pigments 🎨
    His expertise extends to inorganic pigments, driving advancements in materials for industrial applications.

Accolades and Recognition 🏆

Dr. Panda’s groundbreaking research has earned him numerous accolades and recognition. As a senior scientist at a leading national research institution, his contributions are widely acknowledged in academic and industrial circles. His innovations have significantly impacted material science and its applications in energy, environment, and industry.

Impact and Influence 🌟

Dr. Panda’s work has had a profound impact on the field of nanomaterials. His advancements in energy storage have the potential to revolutionize the renewable energy sector, enabling efficient and sustainable solutions. Moreover, his contributions to environmental remediation and green chemistry underscore his commitment to addressing pressing global challenges.

Legacy and Future Contributions 🌐

As a researcher, mentor, and innovator, Dr. Panda continues to inspire the next generation of scientists. His vision for creating sustainable and efficient materials aligns with global priorities for clean energy and environmental conservation. Future endeavors may include:

  • Expanding research in graphene-based nanomaterials for multifaceted applications.
  • Developing next-generation materials for solar energy harvesting.
  • Collaborating globally to tackle challenges in environmental sustainability and energy efficiency.

Citations

A total of 7434 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        7434
  • h-index          50
  • i10-index       114

Notable Publications

  • Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo
    • Authors: D. Das, P. Ghosh, A. Ghosh, C. Haldar, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin and Poly(Acrylic Acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin
    • Authors: D. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2015.
  • Dextrin Cross Linked with Poly(HEMA): A Novel Hydrogel for Colon-Specific Delivery of Ornidazole
    • Authors: D. Das, R. Das, P. Ghosh, S. Dhara, A. B. Panda, S. Pal
    • Journal: RSC Advances
    • Year: 2013.
  • Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene
    • Authors: N. Sutradhar, A. Sinhamahapatra, S. Pahari, M. Jayachandran, A. B. Panda
    • Journal: The Journal of Physical Chemistry C
    • Year: 2011.
  • Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solvent-Free Conditions
    • Authors: A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H. C. Bajaj, A. B. Panda
    • Journal: Applied Catalysis A: General
    • Year: 2010.

Mohd Arsalan | Material Science | Best Researcher Award

Dr. Mohd Arsalan | Material Science | Best Researcher Award

Aligarh Muslim University, India

Author Profile

Early Academic Pursuits 🌟

Mohd Arsalan’s academic journey began with an unwavering commitment to excellence in the field of chemistry. His passion for science was evident from his early years at Beenapara Inter College, Azamgarh, where he completed his matriculation in 2002, excelling in core subjects like Science, Mathematics, and languages such as Hindi, Urdu, and Arabic. Continuing his pursuit of knowledge, he graduated in 2004 with an intermediate education in Physics, Chemistry, and Biology, laying a strong foundation for his future endeavors.

His higher education took a remarkable turn when he joined the prestigious Aligarh Muslim University (AMU), known for its rich academic heritage. Arsalan earned his Bachelor of Science in Chemistry in 2007, marking the beginning of a transformative journey. This was followed by his Master of Science in Chemistry in 2009, during which he honed his expertise in theoretical and practical aspects of the discipline. His drive for academic excellence led him to complete an M.Phil in Chemistry in 2012 and culminated in his earning a Ph.D. in Chemistry in 2015 from the Department of Chemistry, AMU. His doctoral work stands as a testament to his intellectual rigor and dedication. 📚🎓


Professional Endeavors and Expertise 🚀

With a robust academic background, Mohd Arsalan embarked on a professional journey that merged research with practical applications. His expertise spans diverse domains, including polymeric-inorganic composite materials, membrane technology, and wastewater engineering. These areas reflect his commitment to addressing pressing environmental issues and advancing material science.

Arsalan’s research in water desalination and adsorption technology underscores his focus on solving global challenges related to water scarcity and pollution. His proficiency in synthesizing materials, characterizing them, and applying them in real-world scenarios has placed him at the forefront of innovation. His work often integrates environmental science with advanced separation processes, enabling efficient removal of organic and inorganic pollutants.

He is also adept at composite membrane formation and electrochemical studies, exploring chemical kinetics to drive solutions in wastewater management. Arsalan’s interdisciplinary approach ensures his contributions remain impactful and relevant. 🌍💧


Contributions and Research Focus 🔬

Arsalan has dedicated his career to advancing scientific understanding and developing sustainable technologies. His focus on material synthesis and the creation of composite membranes has led to significant advancements in membrane technology. These membranes are instrumental in purifying water, desalinating seawater, and treating wastewater.

Through meticulous research, he has developed innovative solutions for removing contaminants, including organic and inorganic pollutants, from water systems. His studies in chemical kinetics have provided valuable insights into the reaction mechanisms that drive these purification processes.

Arsalan’s expertise in wastewater engineering has also led to sustainable approaches for industrial waste management. His ability to blend theory with practical applications has made his work highly valuable in academia and industry. 🌱🔗


Accolades and Recognition 🏆

Throughout his career, Mohd Arsalan has been acknowledged for his contributions to science and technology. His research has received recognition from peers and institutions, earning him accolades for his innovative approaches to environmental challenges.

His ability to synthesize polymeric-inorganic composite materials with exceptional properties has been lauded for its practical applications in water and environmental engineering. Arsalan’s scholarly publications, invited talks, and conference presentations showcase his leadership in the scientific community. ✨📜


Impact and Influence 🌐

Arsalan’s work has had a far-reaching impact on academia and industry, influencing practices in water treatment and environmental management. His research has paved the way for cost-effective and sustainable solutions to water pollution, addressing a critical global concern.

By mentoring students and collaborating with other researchers, he continues to inspire the next generation of scientists. His interdisciplinary work bridges chemistry, environmental science, and engineering, ensuring its broad applicability and relevance. 🌟🤝


Legacy and Future Contributions 🔮

Mohd Arsalan’s legacy lies in his contributions to creating sustainable technologies that address environmental challenges. His work in wastewater engineering and membrane technology is a testament to his commitment to innovation.

Looking ahead, Arsalan aims to expand his research into cutting-edge areas like nanotechnology and renewable energy integration in water treatment processes. His vision for a sustainable future drives his relentless pursuit of knowledge and solutions. As an academic and professional, he continues to make a lasting impact on science and society. 🌍💡

In summary, Mohd Arsalan’s journey, marked by academic brilliance, innovative research, and impactful contributions, serves as an inspiration to aspiring scientists. His work is a beacon of hope for a sustainable future, addressing critical challenges with science and ingenuity. ✨

Citations

A total of 112 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        112
  • h-index          19
  • i10-index       06

Notable Publications 

  • Title: Synthesis of Polyvinyl Chloride-Based Zirconium Molybdophosphate Composite Membrane: An Assessment of Experimental and Theoretical Approaches through Electrochemical Parameters
    Authors: Zehra, A., Arsalan, M., Rafiuddin
    Journal: Journal of Membrane Science and Research, 2023.
  • Title: Preparation and characterization of polyvinyl chloride-based nickel phosphate ion-selective membrane and its application for removal of ions through water bodies
    Authors: Arsalan, M., Zehra, A., Khan, M.M.A., Rafiuddin
    Journal: Groundwater for Sustainable Development, 2019.
  • Title: Synthesis and characterization of Co₃(PO₄)₂ and Ni₃(PO₄)₂ composite membranes based on PVC: A comparative electrochemical study through aqueous electrolyte solutions
    Authors: Arsalan, M., Alam, F., Khan, I., Oves, M.
    Journal: Journal of Membrane Science and Research, 2018.

P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Dr. P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Madonna Arts and Science College for Women, India

Author Profile

Early Academic Pursuits 🎓

Dr. S.R.P. Arockia Michael Mercy embarked on her academic journey with a focus on Physics, completing her Bachelor of Science in Physics from MK University in 2005. Her passion for the subject led her to pursue a Master’s in Physics at Arul Anandar College, affiliated with MK University, completing it in 2017. This foundational education ignited her curiosity in the fields of microstrip patch antennae and solar cells, motivating her to delve further into research. Driven by her dedication to innovation and scientific advancement, she earned her PhD in Physics from MK University in 2023, marking a significant milestone in her academic journey.

Professional Endeavors and Teaching Experience 👩‍🏫

Dr. Mercy’s career as an educator began with her role as an Assistant Professor at Madonna Arts and Science College for Women, where she has devoted eight years to shaping the minds of future scientists. With her teaching interests spanning various subjects, including Physics laboratory practices, and personal passions like choir, dance, and hand arts, she has contributed to the academic and holistic growth of her students. Her dedication to teaching goes beyond mere theoretical knowledge, as she emphasizes hands-on learning and practical applications of physics concepts in real-world settings. Her versatility and passion for various forms of art also enrich her classroom experience, creating a dynamic and inclusive learning environment.

Contributions and Research Focus 🔬

Dr. Mercy’s research interests lie primarily in Microstrip Patch Antenna and Solar Cells, fields that have tremendous potential for impacting technology and sustainability. Microstrip patch antennas, known for their compact size and efficiency, are essential in modern communication systems, from mobile devices to satellite applications. Dr. Mercy’s research contributes to advancements in antenna technology, focusing on enhancing signal clarity, reducing interference, and improving overall efficiency. Her work in solar cells aligns with the global pursuit of renewable energy sources. By exploring innovative materials and designs, she contributes to making solar technology more accessible and efficient, aiming to reduce environmental impact and dependence on fossil fuels.

Accolades and Recognition 🏅

Throughout her career, Dr. Mercy has been recognized for her dedication to education and commitment to research. Her innovative approaches in the classroom and contributions to her research areas have earned her respect among colleagues and students alike. Her research in microstrip patch antennae and solar cells is particularly noteworthy in academic circles, as these fields are both highly competitive and impactful. She has also participated in various academic conferences, sharing her findings and insights with fellow researchers and contributing to the broader scientific community.

Impact and Influence 🌍

Dr. Mercy’s influence extends beyond her classroom, reaching her students, colleagues, and the scientific community. As a mentor, she encourages her students to pursue their passions, fostering a culture of curiosity and perseverance. Her work in microstrip patch antennae and solar cells is relevant not only in academia but also in industries focused on communications and renewable energy. By aligning her research with global needs for sustainable energy and advanced communication technology, she has positioned herself as an advocate for positive change and innovation.

Legacy and Future Contributions 🚀

As Dr. Mercy continues her journey in academia and research, her contributions promise to leave a lasting legacy. Her students benefit not only from her knowledge in physics but also from her holistic approach to learning, which includes arts and creative thinking. Her ongoing research in microstrip patch antennae and solar cells holds the potential for groundbreaking discoveries that could influence these fields for years to come. As she expands her research and engages in collaborative projects, Dr. Mercy aims to inspire future generations of physicists and researchers to pursue innovation and sustainability.

Citations

A total of 21 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         21
  • h-index           12
  • i10-index        3

Notable Publications 

  • Title: Novel nanocomposite based microstrip patch antenna for C and X band applications
    Author(s): Mercy, P.A.M.
    Journal: Materials Chemistry and Physics
    Year: 2024.
  • Title: Gain Enhancement of Composite Photonic Crystal Microstrip Patch Antenna Inspired by Maxwell Garnett Model for C-Band, X-Band and Ku Band Applications
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: Comparative Study of Polarization-Dependent Conversion Efficiency of GaAs and Si Solar Cells at Oblique Incident Angles Using Surface DLAR Coating of MgF2/ZnSe
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: A Comparative Study of Diverse RF-MEMS Switch Design Concepts Experimentally Verified up to 110 GHz for Beyond-5G, 6G and Future Networks Applications
    Author(s): Iannacci, J., Tagliapietra, G., Donelli, M., Guha, K., Lenka, T.R.
    Journal: Lecture Notes in Electrical Engineering
    Year: 2024.
  • Title: Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Applied Surface Science Advances
    Year: 2023.

Chinmoy Das | Energy materials | Best Researcher Award

Assist Prof Dr. Chinmoy Das | Energy materials | Best Researcher Award

SRM University-AP, Andhra Pradesh, India

Author Profile

Early Academic Pursuits

Dr. Chinmoy Das embarked on his academic journey at the prestigious Indian Institute of Technology Bombay (IIT Bombay), where he pursued a Ph.D. in Inorganic Chemistry. Under the mentorship of Prof. Maheswaran Shanmugam, he developed a solid foundation in the principles of chemistry, particularly focusing on the synthesis of functional materials. His time at IIT Bombay (2012-2017) was marked by rigorous research and experimentation, leading to significant advancements in understanding the interactions and properties of inorganic compounds. This period laid the groundwork for his future endeavors in both academic and research settings, fostering a passion for experimental chemistry that continues to drive his work today. 🎓

Professional Endeavors

Following the completion of his doctoral studies, Dr. Das took on various roles that enriched his professional portfolio. He began as a Research Associate at IIT Bombay, where he contributed to several projects, expanding his expertise in material synthesis and characterization. His journey continued internationally, with impactful positions as a Postdoctoral Researcher at Technische Universität Dortmund in Germany, and later at the AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory in Japan. During these formative years (2018-2023), Dr. Das honed his skills in developing novel materials aimed at solving critical energy and environmental challenges. In September 2023, he accepted a role as an Assistant Professor in the Department of Chemistry at SRM University-AP in Amaravati, India, marking a return to academia with a renewed focus on research and teaching. 🌍

Contributions and Research Focus

Dr. Das’s research is characterized by a commitment to sustainability and innovation. His motivation to synthesize new functional materials aims at addressing global challenges, particularly in energy production and water purification. One of his key areas of focus is the synthesis of methanol and ethanol from atmospheric CO2, a groundbreaking endeavor that aligns with eco-friendly practices and the principles of green chemistry. By leveraging innovative chemical processes, Dr. Das strives to contribute to the development of sustainable fuel alternatives that can significantly reduce greenhouse gas emissions.In addition to fuel production, Dr. Das is passionate about harnessing solar energy to produce clean drinkable water from atmospheric moisture. This research not only addresses the pressing issue of water scarcity but also promotes the utilization of renewable energy sources in a sustainable manner. Furthermore, he is exploring the development of biodegradable solid-state electrolytes aimed at creating low-cost Li/Na-ion batteries, which are crucial for the advancement of energy storage technologies. 🔋

Accolades and Recognition

Dr. Das’s contributions to the field of chemistry have not gone unnoticed. His research has been published in several esteemed journals, garnering citations and recognition within the scientific community. He has received awards and grants that acknowledge his innovative work, reflecting his commitment to advancing both academic knowledge and practical applications. His collaborative work during his postdoctoral tenure has also positioned him as a respected figure in international research circles, further enhancing his academic reputation. 🏆

Impact and Influence

Through his teaching and mentorship at SRM University-AP, Dr. Das is shaping the next generation of chemists. He inspires students to pursue their passions while instilling the importance of sustainability in scientific research. His professional journey serves as a beacon for aspiring scientists, illustrating the potential impact of dedicated research on real-world issues. By focusing on sustainable practices, he aims to influence not just academic peers but also industry stakeholders, advocating for greener alternatives in energy and materials science. 🌱

Legacy and Future Contributions

As Dr. Chinmoy Das continues to explore innovative avenues in his research, his legacy will likely reflect a profound commitment to environmental sustainability and technological advancement. He envisions a future where his contributions can lead to significant breakthroughs in clean energy and water purification technologies. By focusing on eco-friendly solutions, Dr. Das aspires to leave a lasting impact on both academia and industry, fostering a culture of innovation that prioritizes ecological balance.In the coming years, Dr. Das aims to expand his research collaborations internationally, seeking to engage with other scientists and institutions that share his vision. His goal is not only to advance his own research agenda but also to contribute to broader discussions on sustainability within the global scientific community. Through these efforts, he hopes to solidify his role as a leader in the field of chemistry, guiding future generations toward a more sustainable and environmentally conscious approach to science. 🌏In conclusion, Dr. Chinmoy Das exemplifies the integration of academic rigor with a commitment to sustainable innovation. His journey from IIT Bombay to his current position as an Assistant Professor highlights his dedication to addressing some of the most pressing challenges of our time through chemistry.

Citations

A total of 968 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         968
  • h-index           33
  • i10-index        16

Notable Publications 

  • Title: Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites
    Authors: Ye, C., Lampronti, G.I., McHugh, L.N., Dutton, S.E., Bennett, T.D.
    Journal: Chemical Science, 2024.
  • Title: Insights Into the Mechanochemical Glass Formation of Zeolitic Imidazolate Frameworks
    Authors: Xue, W.-L., Das, C., Weiß, J.-B., Henke, S.
    Journal: Angewandte Chemie – International Edition, 2024.
  • Title: Breathing porous liquids based on responsive metal-organic framework particles
    Authors: Koutsianos, A., Pallach, R., Frentzel-Beyme, L., Sternemann, C., Henke, S.
    Journal: Nature Communications, 2023.
  • Title: Creating glassy states of dicarboxylate-bridged coordination polymers
    Authors: Fan, Z., Wei, Y.-S., Das, C., Ohara, K., Horike, S.
    Journal: Chemical Communications, 2023.
  • Title: A robust low coordinate Co(II) catalyst for efficient conversion of CO2 into methanol under mild conditions
    Authors: Sharma, V., Rasamsetty, A., Das, C., Borah, D., Shanmugam, M.
    Journal: Chemical Engineering Journal, 2023.