ANITA KUMARI | Biotechnology | Best Researcher Award

Ms. ANITA KUMARI | Biotechnology | Best Researcher Award

CSIR-IHBT, India

Author Profile

Early Academic Pursuits 🌟

Anita Kumari’s educational journey began at Bharat Bharati School in Dhalpur Kullu, Himachal Pradesh. From an early age, her dedication and curiosity in scientific pursuits were apparent, evident in her academic performance. Completing her matriculation in 2011 with an impressive 85.5% score, she continued her studies at the same institution, achieving 83.2% in her senior secondary education in 2013. This foundation prepared her well for higher studies, igniting her interest in the natural sciences, especially botany, which would later become the focus of her career.

Professional Academic Development 📚

Anita pursued a B.Sc. Honours degree in Botany at Govt Degree College in Kullu. Her dedication was clearly reflected in her academic achievements, as she graduated with 84.4% in 2016. Her achievements did not stop there; she continued her education at Panjab University, Chandigarh, for an M.Sc. in Botany, graduating in 2018 with an impressive 76.2%. Her choice to specialize in botany was driven by her fascination with plant biology and ecology, as well as the profound potential of plants in environmental sustainability. Her academic journey led her to a Ph.D. program at the CSIR-Institute of Himalayan Bioresource Technology, where she is currently involved in advanced research.

Research Contributions and Focus 🔬

Anita’s research focuses on Himalayan bioresources, highlighting sustainable practices and conservation. The choice of research area is driven by her interest in leveraging local natural resources to address global environmental challenges. Her research contributions are aimed at exploring new methods to sustainably utilize plant resources, particularly within the rich biodiversity of the Himalayan region. Her work emphasizes the intersection of biodiversity, botany, and ecological preservation, making her contributions not only academically valuable but also vital to regional and global ecological efforts.

Professional Endeavors and Practical Experience 💼

Beyond her academic accomplishments, Anita has engaged in various practical applications of her research. By collaborating with her institution on field projects and lab research, she has gained hands-on experience in the extraction, analysis, and application of botanical resources. Her work aims to support local sustainability initiatives and contribute to larger bio-conservation goals. Through her ongoing Ph.D. work, she has expanded her expertise in scientific methodology, data analysis, and field research, skills that have furthered her development as a researcher and a contributor to the scientific community.

Accolades and Recognition 🏆

Anita’s academic achievements and dedication to her field have garnered her recognition within her academic and research communities. She has earned the respect of her peers and mentors for her commitment to excellence and her keen insight into botanical science. This recognition is not just limited to her institutions; her work has also caught the attention of organizations focused on Himalayan conservation and sustainable bioresources, further establishing her reputation in the scientific community.

Impact and Influence 🌍

Anita’s research is already contributing to a greater understanding of sustainable practices within the context of Himalayan biodiversity. Her studies on plant resources hold the potential to make significant advancements in sustainable agriculture, herbal medicine, and environmental conservation. By focusing on bioresources unique to the Himalayan region, she is helping to preserve a valuable ecological zone while providing practical solutions that can be applied globally. Her commitment to her work serves as an inspiration for young scientists and environmentalists, encouraging them to pursue careers that contribute to both scientific advancement and ecological preservation.

Legacy and Future Contributions 🌱

Looking ahead, Anita is poised to leave a lasting impact on the field of botany and sustainable resource management. As she continues her Ph.D. research and eventually embarks on professional opportunities beyond academia, her work is likely to benefit not only her immediate community but also contribute to larger environmental initiatives. Her future goals include developing eco-friendly solutions that are rooted in scientific research and adaptable for community use, thus merging research with practical, accessible applications. Her vision is to promote a sustainable relationship with nature and empower communities through scientific knowledge.

Conclusion 🌟

Anita Kumari’s academic and research journey reflects a harmonious blend of academic excellence and a deep commitment to ecological preservation. Her educational background, practical research experience, and dedication to sustainability have laid a solid foundation for her future contributions to science and society. As she continues to expand her work, her contributions will undoubtedly help foster a more sustainable future, setting an example for others in the field of botany and environmental science. Her journey is a testament to the potential of young scientists to make a meaningful impact on our world.

Citations

A total of 302 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         302
  • h-index           18
  • i10-index        06

Notable Publications

  • Physiological responses and transcriptomic profiles unveil pivotal genes and pathways implicated in nano-elicited in vitro shoot proliferation of Bambusa balcooa
    • Authors: Kumari, A., Joshi, S., Dar, A.I., Joshi, R.
    • Journal: Plant Cell, Tissue and Organ Culture
    • Year: 2024.
  • Phenylalanine encapsulation into an amphiphilic carboxymethyl cellulose-derivative enhanced plant uptake and metabolism efficiency
    • Authors: Kumar, V., Nadarajan, S., Kumari, A., Poverenov, E., Oren-Shamir, M.
    • Journal: Postharvest Biology and Technology
    • Year: 2024.
  • Understanding the population dynamics and spatial variability of tea plantation
    • Authors: Kumari, A., Sharma, R.K., Joshi, R.
    • Journal: Vegetos
    • Year: 2024.
  • Omic tools in understanding stress tolerance in grasses
    • Authors: Kumari, A., Nath, J., Gusain, S., Rawat, M., Joshi, R.
    • Journal: Current Omics Advancement in Plant Abiotic Stress Biology (Developments in Applied Microbiology and Biotechnology)
    • Year: 2024.
  • Advancement in understanding cold stress tolerance using “omics” tools
    • Authors: Joshi, S., Nath, J., Kumari, A., Rawat, M., Joshi, R.
    • Journal: Current Omics Advancement in Plant Abiotic Stress Biology (Developments in Applied Microbiology and Biotechnology)
    • Year: 2024.

Madhavi Dalsaniya | Materials Science | Best Researcher Award

Ms. Madhavi Dalsaniya | Materials Science | Best Researcher Award

Warsaw University of Technology, India

Author Profile

Early Academic Pursuits 🎓

Madhavi H. Dalsaniya’s academic journey is a testament to her dedication and passion for the field of material science. Her formative years in education began at St. Francis High School in Jamnagar, Gujarat, India, where she achieved Distinction in her Secondary Education (2011). This early academic success paved the way for her further pursuit of knowledge in the field of Physics. Madhavi continued her academic endeavors at Sunrise School in Jamnagar, where she completed her Higher Secondary Education in 2013, securing First Class. With a solid foundation in physics, she pursued her undergraduate studies at The Maharaja Sayajirao University of Baroda (MSU), Vadodara, Gujarat, where she earned a B.Sc. in Physics in 2016, finishing with Second Class.Her strong academic performance led her to pursue a Master’s degree in Physics at the same institution, The Maharaja Sayajirao University of Baroda, where she graduated in 2018 with First Class honors. This period of advanced studies sparked her growing interest in Material Science, which later became the focal point of her career. It was during her Master’s that she developed a keen interest in the properties of materials and their potential applications, setting the stage for her future academic endeavors.

Professional Endeavors and Research Focus 🔬

Madhavi H. Dalsaniya’s professional journey has been marked by a steadfast commitment to the study and application of material science. Currently, she is pursuing her Ph.D. in Material Science at the prestigious Warsaw University of Technology in Warszawa, Poland, a position she has held since October 2020. The focus of her doctoral research is on the properties and applications of materials in various fields, contributing to the growing body of knowledge in material science. Her work involves exploring new materials with enhanced properties and understanding their structural characteristics at the atomic and molecular levels.As a doctoral student, Madhavi has not only been working diligently on her research but also actively engaging with the scientific community through academic conferences, seminars, and workshops. She has established herself as a budding researcher in the field, gaining valuable insights and collaborating with experts in the field of material science. Her research contributions focus on novel materials that can be used in a wide array of industries, including electronics, nanotechnology, and renewable energy.

Contributions and Research Focus 🌍

Madhavi’s research is making significant strides in the field of material science. She focuses on advancing the understanding of material properties, which can potentially lead to groundbreaking advancements in various technological applications. Her research encompasses a range of topics, including the study of nanomaterials, their synthesis, characterization, and potential applications in energy storage and conversion systems. By investigating the unique properties of different materials at the microscopic level, Madhavi aims to contribute to the development of more efficient and sustainable materials for future technologies.One of her key research areas is the exploration of new materials with enhanced conductivity and stability for use in electronic devices. She is also interested in the role of nanomaterials in renewable energy, including solar cells and energy storage devices. Through her work, Madhavi aims to push the boundaries of material science and contribute to the creation of more sustainable and efficient solutions for contemporary challenges.

Accolades and Recognition 🏆

Although still early in her career, Madhavi has already earned recognition for her academic achievements and research contributions. Her dedication to the field of material science has not gone unnoticed, and she has been acknowledged for her outstanding performance as a doctoral student. The first-class honors she received during her M.Sc. program laid the foundation for her future academic success. As a Ph.D. student, Madhavi has been invited to present her research at several international conferences, where her work has garnered attention for its originality and scientific rigor.Her involvement in the research community and her commitment to advancing material science have also led to opportunities for collaboration with prominent researchers in her field. Her work has contributed to expanding the knowledge base surrounding the application of nanomaterials in various industries, solidifying her reputation as a promising researcher.

Impact and Influence 🌟

Madhavi H. Dalsaniya’s work is poised to make a lasting impact on the field of material science. By advancing our understanding of the properties of materials, her research is expected to lead to innovations that will drive the development of new technologies. In particular, her exploration of nanomaterials and their potential applications in renewable energy and electronics could play a significant role in addressing some of the world’s most pressing challenges, such as energy storage and climate change.Her influence extends beyond her research contributions, as she serves as a role model for aspiring scientists and researchers, particularly women in STEM fields. Madhavi’s academic journey and perseverance in pursuing advanced research serve as an inspiration to others who seek to contribute to scientific advancements and make a meaningful impact on society.

Legacy and Future Contributions 🌱

Looking toward the future, Madhavi H. Dalsaniya is on track to make significant contributions to the world of material science. As she continues her Ph.D. research, her work will undoubtedly leave a lasting legacy in the field. She aims to continue exploring the applications of new materials in the realms of energy, electronics, and sustainability. The potential for her research to shape future technologies is immense, and she is well-positioned to be a leading figure in the development of novel materials that address global challenges.Madhavi’s commitment to advancing material science, coupled with her passion for research and innovation, ensures that her future contributions will have a profound impact on both the scientific community and society at large. As she progresses in her academic career, her work is expected to inspire future generations of scientists and engineers, making her a key figure in the evolution of material science. 🌍🔬

Citations

A total of 106 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         106
  • h-index           12
  • i10-index        05

Notable Publications 

  • Title: Pressure-Dependent Thermal and Mechanical Behaviour of a Molecular Crystal of Bromine
    Authors: Dalsaniya, M.H., Upadhyay, D., Patel, P., Kurzydłowski, K.J., Kurzydłowski, D.
    Journal: Molecules
    Year: 2024.
  • Title: Exploration of Si-N Compounds as High Energy Density Materials
    Authors: Patel, P., Patel, S., Dalsaniya, M.H., Kurzydłowski, K.J., Jha, P.K.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024.
  • Title: High-Pressure Stabilization of Open-Shell Bromine Fluorides
    Authors: Dalsaniya, M.H., Upadhyay, D., Jan Kurzydłowski, K., Kurzydłowski, D.
    Journal: Physical Chemistry Chemical Physics
    Year: 2023.
  • Title: A Density Functional Theory Study on the Assessment of α-CN and α-CP Monolayers as Anode Material in Li-Ion Batteries
    Authors: Patel, P., Patel, S., Chodvadiya, D., Kurzydłowski, K.J., Jha, P.K.
    Journal: Journal of Energy Storage
    Year: 2023.
  • Title: Defects and Doping Engineered Two-Dimensional o-B2N2 for Hydrogen Evolution Reaction Catalyst: Insights from DFT Simulation
    Authors: Chodvadiya, D., Dalsaniya, M.H., Som, N.N., Kurzydłowski, K.J., Jha, P.K.
    Journal: International Journal of Hydrogen Energy
    Year: 2023.

Govindaraj Sabarees | Material Science | Young Scientist Award

Dr. Govindaraj Sabarees | Material Science | Young Scientist Award

Shri Venkateshwara College of Pharmacy, India

Author Profile

Early Academic Pursuits 🎓

G. Sabarees has consistently shown a strong dedication to the field of pharmacy, starting with his foundational education in B. Pharmacy. He graduated from Sankaralingam Bhuvaneshwari College of Pharmacy in Sivakasi, Tamil Nadu, in 2016, achieving first class honors with a commendable score of 71.0%. This early phase marked his commitment to pharmaceutical sciences and set the stage for his future accomplishments in the field. Driven by an eagerness to explore deeper aspects of pharmaceutical chemistry, he pursued an M. Pharmacy degree at C.L. Baid Metha College of Pharmacy, Chennai. Graduating in 2018 with first-class distinction and a 74.0% score, he solidified his foundational knowledge and gained hands-on expertise in pharmaceutical chemistry, enabling him to specialize further.Following his M. Pharmacy, G. Sabarees embarked on a Ph.D. in Pharmacy at SRM Institute of Science and Technology, one of India’s premier institutions. With his final viva pending for the 2021–2023 academic term, he has shown a tireless commitment to research and academics. His Ph.D. studies have sharpened his analytical skills and expanded his understanding of advanced pharmaceutical sciences, positioning him for impactful research in the field.

Professional Endeavors 🧑‍🔬

In addition to his academic achievements, G. Sabarees gained valuable professional experience by working as a Bioanalytical Research Associate at Amaris Clinical, a division of Caplin Point Laboratories in Chennai. His 14-month tenure here was pivotal, allowing him to bridge the gap between academic learning and industry practice. As a Bioanalytical Research Associate, he honed critical skills in bioanalysis, drug testing, and clinical research—areas essential to pharmaceutical sciences and healthcare. This experience provided him with practical exposure to industry standards, quality control, and regulatory requirements, all of which complement his research work.His professional background extends beyond technical tasks. He has also acquired teaching experience, having guided junior researchers, project assistants, and B. Pharm and M. Pharm scholars in various aspects of research and laboratory techniques. His ability to mentor younger students has enhanced his communication, leadership, and instructional skills, establishing him as a supportive figure in academic settings. Additionally, his proficiency in scientific writing, communicating research findings, and proofreading articles has enabled him to contribute meaningfully to the research community.

Contributions and Research Focus 🔬

G. Sabarees’ research interests primarily revolve around pharmaceutical chemistry, with a particular emphasis on bioanalytical studies. Throughout his academic and professional career, he has focused on developing and refining methods for pharmaceutical analysis and drug formulation, which are critical for ensuring drug safety, efficacy, and quality. His expertise in bioanalysis has contributed significantly to the field, particularly through his work with Amaris Clinical, where he handled complex analytical procedures and assisted in the maintenance and calibration of sensitive laboratory instruments.oreover, G. Sabarees has played an instrumental role in conducting B. Pharm and M. Pharm research projects. His work often involves advanced analytical techniques that facilitate better understanding of drug properties, pharmacokinetics, and pharmacodynamics. By mentoring young scholars, he has also contributed to the academic growth of many future pharmacists and researchers, sharing his knowledge of instrumentation and analytical techniques.

Accolades and Recognition 🏅

Although G. Sabarees is in the early stages of his research career, his achievements reflect his dedication and excellence in pharmaceutical sciences. His first-class scores in both B. Pharmacy and M. Pharmacy are testaments to his academic rigor and commitment to excellence. His role as a Bioanalytical Research Associate and his ongoing Ph.D. research have established him as a rising scholar in his field, earning him recognition from peers and mentors alike.

Impact and Influence 🌍

Through his teaching and mentorship roles, G. Sabarees has had a positive impact on his colleagues and junior researchers. His guidance has not only helped students understand complex pharmaceutical processes but also inspired them to explore research paths in pharmaceutical sciences. His work at Caplin Point Laboratories, particularly in bioanalysis, has contributed to the industry by enhancing the accuracy and reliability of drug testing and analysis. This focus on quality and precision in pharmaceutical analysis is crucial for maintaining public health and safety, adding a layer of responsibility to his contributions.

Legacy and Future Contributions 🌟

Looking forward, G. Sabarees has the potential to make significant contributions to the field of pharmaceutical research and education. His current work in pharmaceutical chemistry, coupled with his experience in bioanalysis, positions him to become a prominent figure in the industry. With plans to further his research and contribute new insights to pharmaceutical chemistry, he aspires to publish his findings in renowned scientific journals, thereby enriching the global body of knowledge in pharmaceutical sciences.In addition, his passion for teaching and mentorship suggests that he will continue to inspire and guide future generations of pharmacists and researchers. Through ongoing contributions to the scientific community, G. Sabarees is poised to leave a lasting legacy in the pharmaceutical field. As he completes his Ph.D. and embarks on new research endeavors, his dedication to advancing pharmaceutical sciences and his commitment to excellence will undoubtedly influence the future of healthcare and drug development.G. Sabarees exemplifies the qualities of a dedicated researcher and mentor. With his strong academic foundation, industry experience, and unwavering commitment to quality, he is well on his way to making lasting contributions to pharmaceutical sciences. His journey thus far reflects both his personal and professional growth, and his future endeavors hold promise for furthering scientific advancements in the pharmaceutical industry.

Citations

A total of 88 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         88
  • h-index           11
  • i10-index        04

Notable Publications 

  • Molecular docking and molecular dynamics simulations discover curcumin analogs as potential wound healing agents
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2024.
  • Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study
    • Authors: Sabarees, G., Velmurugan, V., Gouthaman, S., Solomon, V.R., Kandhasamy, S.
    • Journal: Pharmaceutics
    • Year: 2024.
  • Collagen-based nanofibers: revolutionizing therapeutics for impaired wound healing
    • Authors: Sabarees, G., Vishvaja, S., Raghuraman, S., Solomon, V.R., Padmini Tamilarasi, G.
    • Journal: International Journal of Polymeric Materials and Polymeric Biomaterials
    • Year: 2024.
  • Computational Screening of Some Phytochemicals to Identify Best Modulators for Ligand Binding Domain of Estrogen Receptor Alpha
    • Authors: Alagarsamy, V., Sundar, P.S., Solomon, V.R., Narendhar, B., Sabarees, G.
    • Journal: Current Pharmaceutical Design
    • Year: 2024.
  • Discovery of new naphthyridine hybrids against enoyl-ACP reductase (inhA) protein target of Mycobacterium tuberculosis: Molecular docking, molecular dynamics simulations studies
    • Authors: Sabarees, G., Velmurugan, V., Solomon, V.R.
    • Journal: Chemical Physics Impact
    • Year: 2023.

Rakesh Singh | Biotechnology | Best Researcher Award

Dr. Rakesh Singh | Biotechnology | Best Researcher Award

National Bureau of Plant Genetic Resources, India

Author Profile

Early Academic Pursuits 🎓

Dr. Singh’s academic journey began with a B.Sc. in Chemistry Honours from Banaras Hindu University (BHU), Varanasi, in 1991. Following his initial studies, he pursued an M.Sc. in Molecular Biology and Biotechnology at G.B. Pant University of Agriculture and Technology, Pantnagar, where he developed a thesis focused on the cloning of the gln A gene from Bacillus brevis. His work demonstrated early promise in genetic research and laid a foundation for his future endeavors in biotechnology. In 1996, he completed an M.Tech in Biochemical Engineering at the Institute of Technology, BHU, specializing in the optimization of processes for producing thermostable alkaline protease through the bacterium Bacillus coagulans. His research set the stage for his Ph.D. work and his entry into the field of molecular biology.Dr. Singh’s pursuit of higher education culminated with a Ph.D. in Molecular Biology and Biotechnology in 2007 from the National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi. His thesis, which focused on the fine mapping of genes responsible for aroma and grain dimensions in Basmati rice (Oryza sativa L.), marked a significant milestone in the genetic study of a crop of immense cultural and economic importance to India. 🍚

Professional Endeavors and Career Progression 🌐

Dr. Singh’s professional career took root in 1997 when he joined the Agricultural Research Services (ARS) as a Scientist at the National Research Centre on DNA Fingerprinting, NBPGR, New Delhi. For over a decade, he progressed through various positions within the organization, eventually becoming a Senior Scientist in 2007. In this role, he was instrumental in advancing the division’s research focus on DNA fingerprinting and genomic resources. His expertise in DNA analysis, fingerprinting, and molecular markers contributed to India’s growing capabilities in genomic research, especially in areas that impact agricultural biodiversity and food security. 🌾In 2013, Dr. Singh was promoted to Principal Scientist/Professor within the Division of Genomic Resources at NBPGR, where he continued his leadership in plant genomics. His promotion to Head of the Division in 2023 underscored his achievements and the trust placed in his vision for advancing genomic resources at the national level. His post-doctoral training at Washington State University under the prestigious DBT-CREST Fellowship further enhanced his skills, allowing him to bring cutting-edge functional genomics techniques back to India. 🏛️

Contributions and Research Focus 🔬

Dr. Singh’s research portfolio reflects a deep commitment to preserving plant genetic diversity. His work on the DNA fingerprinting of plant species has been instrumental in building comprehensive databases of genetic resources, which are crucial for breeding programs and the conservation of indigenous plant varieties. He has focused extensively on molecular markers, genomics, and functional genomics, aiming to identify traits that enhance agricultural resilience and productivity. Through projects that decode the molecular signatures of various crops, he has helped farmers and scientists gain insights into crop adaptation, disease resistance, and nutritional content. 🌍

Accolades and Recognition 🏆

Dr. Singh’s contributions have not gone unnoticed. His work has been widely recognized by the scientific community, earning him several awards and accolades. His participation in prominent conferences and workshops, as well as his role as a mentor to numerous Ph.D. and M.Tech students, has further cemented his reputation. Dr. Singh’s students have gone on to make significant contributions to the field, carrying forward his legacy of excellence and innovation in plant genomics. 🥇

Impact and Influence 🌱

Dr. Singh’s research has had a profound impact on agricultural practices in India. By developing genomic tools and resources, he has empowered the farming community to adopt more resilient and productive crop varieties. His contributions have not only enhanced the understanding of genetic traits in crops but also ensured the conservation of India’s unique genetic heritage. Through his guidance, the Division of Genomic Resources at NBPGR has become a cornerstone for genomic research, influencing policies and practices in agriculture and food security across the country. 🌾

Legacy and Future Contributions 🌏

As a visionary leader, Dr. Singh is committed to the future of plant genomics in India. His work at NBPGR continues to drive advancements in genetic conservation and sustainable agriculture. Looking ahead, Dr. Singh aims to expand the scope of genomic research to address global challenges, such as climate change and food security. By developing genetic resources that can withstand environmental stresses, he hopes to make Indian agriculture more sustainable and resilient for generations to come. 🌿

Citations

A total of 2032 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        2032
  • h-index          102
  • i10-index       23

Notable Publications 

  • Title: New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study
    Authors: Sachdeva, S., Singh, R., Maurya, A., Kumar, A., Singh, G.P.
    Journal: BMC Plant Biology
    Year: 2024.
  • Title: Screening diverse cowpea (Vigna unguiculata (L.) Walp.) germplasm for Callosobruchus chinensis (L.) resistance and SSR based genetic diversity assessment
    Authors: Kumar, K.B.C., Tripathi, K., Singh, R., Bhardwaj, R., Gupta, K.
    Journal: Genetic Resources and Crop Evolution
    Year: 2024.
  • Title: Discovering New QTNs and Candidate Genes Associated with Rice-Grain-Related Traits within a Collection of Northeast Core Set and Rice Landraces
    Authors: Roy Choudhury, D., Maurya, A., Singh, N.K., Singh, G.P., Singh, R.
    Journal: Plants
    Year: 2024.
  • Title: SpeedFlower: a comprehensive speed breeding protocol for indica and japonica rice
    Authors: Kabade, P.G., Dixit, S., Singh, U.M., Sinha, P., Singh, V.K.
    Journal: Plant Biotechnology Journal
    Year: 2024.
  • Title: Isolation, Characterization, and Expression Analysis of NAC Transcription Factor from Andrographis paniculata (Burm. f.) Nees and Their Role in Andrographolide Production
    Authors: Kumar, R., Kumar, C., Roy Choudhury, D., Singh, G.P., Singh, R.
    Journal: Genes
    Year: 2024.

Priti Prasanna Maity | Tissue Engineering | Best Researcher Award

Dr. Priti Prasanna Maity | Tissue Engineering | Best Researcher Award

University of California, Riverside, India

Author Profile

🌱 Early Academic Pursuits

Dr. Maity’s academic journey began with an M.Sc. in Medical Laboratory Technology at Vidyasagar University (2004–2006), where her thesis on lipid profiling in chronic smokers laid the foundation for her interest in the health sciences. She then pursued a Master’s in Medical Science & Technology at the prestigious Indian Institute of Technology, Kharagpur (IIT-Kgp), where she conducted groundbreaking research on the molecular and structural profiling of phyllodes tumors and fibroadenomas. Her research offered new insights into diagnostic markers, enhancing the understanding of these conditions and paving the way for more effective diagnostics in clinical settings. This early foundation established Dr. Maity’s commitment to bridging scientific inquiry with practical medical applications.

🧪 Professional Endeavors

Dr. Maity’s professional trajectory showcases an impressive range of positions at reputable institutions. Her PhD at the Indian Institute of Engineering Science and Technology (IIEST, Shibpur) focused on cartilage tissue engineering, a project that not only highlighted her expertise in biomaterials but also her innovative approach to utilizing bio-waste for medical applications. Specifically, she explored the potential of capra ear cartilage in creating micro-tissue particles and injectable hydrogels to promote cartilage regeneration. This work, which included testing on animal models, underscored her potential as a leader in regenerative medicine and garnered significant attention within the research community.After completing her PhD, Dr. Maity embarked on a series of postdoctoral research associate roles in the United States. At the University of California, San Diego, her work on the gut microbiome led to notable breakthroughs in probiotic research. By developing patient-derived colon organoids, she assessed the impact of probiotics on gut barrier integrity, demonstrating their potential in enhancing gut health and treating Crohn’s Disease subtypes. Her work has shown that probiotics and postbiotics could significantly improve the integrity of gut models, specifically aiding non-stricturing, non-penetrating Crohn’s Disease, offering new hope for treatment-resistant patients.Following her work in San Diego, Dr. Maity joined the Medical University of South Carolina as a postdoctoral research associate, where she advanced her expertise in cancer research by generating colon organoids. Her work involved drug resistance assays on CRC cell lines and cutting-edge techniques such as immunofluorescence, qPCR, confocal microscopy, and flow cytometry, equipping her with a comprehensive skill set in molecular biology. Currently, Dr. Maity holds a postdoctoral position at the University of California, Riverside, where she is working on developing co-culture methods in a Gut-on-a-chip system, a project that merges tissue engineering and microbiology in novel ways.

🔬 Contributions and Research Focus

Dr. Maity’s research contributions have consistently targeted high-impact areas in biomedical sciences. Her work on cartilage tissue engineering and bio-waste-derived biomaterials promises a sustainable alternative to synthetic materials in regenerative medicine. Her development of patient-derived organoids has provided valuable models for studying gut health and the therapeutic potential of probiotics. Additionally, her research in cancer biology—particularly her work on drug-resistant colon cancer cell lines—highlights her dedication to addressing critical challenges in oncology.Her collaboration on gut health models, where she investigated the influence of probiotics and postbiotics on intestinal barrier function, has significant implications for gastrointestinal diseases. This pioneering work holds promise for developing treatments that target specific disease subtypes, offering individualized approaches to managing conditions such as Crohn’s disease.

🏆 Accolades and Recognition

Dr. Maity’s groundbreaking research and contributions to the fields of tissue engineering and microbiome science have been widely recognized. Throughout her career, her projects have attracted the attention of academic peers, and her findings have been presented in several prestigious journals and conferences. Moreover, her training in data science at MIT’s Schwarzman College of Computing has further bolstered her analytical capabilities, enabling her to integrate computational techniques into her research, an increasingly valuable skill in biomedical sciences.

🌍 Impact and Influence

Dr. Maity’s work has had a profound impact on both academic research and clinical applications. Her interdisciplinary approach has bridged the gap between laboratory research and potential therapeutic applications, especially in the fields of regenerative medicine, oncology, and gut health. Her tissue engineering research, for instance, has opened up new possibilities for sustainable bio-waste applications, while her insights into organoid modeling have influenced current practices in studying disease mechanisms and treatment responses.Her contributions are also a testament to the growing relevance of organ-on-a-chip systems, which are helping researchers study complex interactions in controlled environments. Her work on Gut-on-a-chip could revolutionize the study of intestinal health, offering models that accurately mimic human physiology and provide new insights into gastrointestinal conditions.

🌟 Legacy and Future Contributions

Dr. Maity’s work stands as a testament to her unwavering dedication to advancing biomedical research. Her innovative projects have not only furthered understanding in her field but have also inspired a new generation of scientists to pursue research that addresses global health challenges. As she continues to expand her research at the University of California, Riverside, she is likely to drive new developments in tissue engineering and microbiome science, with a focus on translating her findings into therapeutic applications.Looking forward, Dr. Maity is well-positioned to make impactful contributions in biomedical innovation. With her deep expertise in organoid technology, her ability to integrate data science into biological research, and her commitment to interdisciplinary collaboration, her future work promises to break new ground. She remains an influential figure in her field, with her research likely to inspire advancements in disease modeling, personalized medicine, and sustainable biomaterials in the years to come.

Citations

A total of 1395 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         1395
  • h-index           36
  • i10-index        21

Notable Publications 

  • A living organoid biobank of patients with Crohn’s disease reveals molecular subtypes for personalized therapeutics
    Authors: Tindle, C., Fonseca, A.G., Taheri, S., Das, S., Ghosh, P.
    Journal: Cell Reports Medicine
    Year: 2024.
  • Peptide-Based Biomaterials for Bone and Cartilage Regeneration
    Authors: Kapat, K., Kumbhakarn, S., Sable, R., Takle, S., Maity, P.
    Journal: Biomedicines
    Year: 2024.
  • Recent Advances and Challenges in the Early Diagnosis and Treatment of Preterm Labor
    Authors: Gondane, P., Kumbhakarn, S., Maity, P., Kapat, K.
    Journal: Bioengineering
    Year: 2024.
  • Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon
    Authors: Múnera, J.O., Kechele, D.O., Bouffi, C., Helmrath, M.A., Wells, J.M.
    Journal: Cell Stem Cell
    Year: 2023.
  • Editorial: Fluorescent nanomaterials for biomedical applications
    Authors: Ganguly, S., Das, P., Parameswaranpillai, J., Maity, P.P.
    Journal: Frontiers in Materials
    Year: 2023.

KM Rakhi | Materials Science | Best Researcher Award

Ms. KM Rakhi | Materials Science | Best Researcher Award

Indian Institute of Technology, Ropar, India

Author Profile

Early Academic Pursuits 🎓

Dr. KM Rakhi’s academic journey began with a Bachelor’s degree in Physics, which she completed at D.A.V College, Muzaffarnagar, affiliated with CCS University, Meerut, India, in July 2013. With a strong academic record and a passion for the sciences, she achieved a notable score of 76.7%, which marked the beginning of her journey into the intricate world of physics. Building on her undergraduate foundation, Dr. Rakhi pursued a Master of Science in Physics, graduating with a commendable CGPA of 72.3% in July 2015. This academic path enabled her to gain insights into advanced physics concepts and developed her interest in experimental research, particularly in the realm of condensed matter physics. In 2019, she joined the prestigious Indian Institute of Technology (IIT) Ropar as a PhD candidate, embarking on research in Experimental Condensed Matter Physics under the guidance of eminent faculty members, which culminated in her receiving her PhD in July 2024.

Professional Endeavors 🔬

Dr. Rakhi’s professional journey at IIT Ropar has been marked by extensive teaching and laboratory experience alongside her research. She contributed as a teaching assistant, offering practical training to undergraduate and postgraduate students in various physics courses. Her teaching portfolio spans multiple terms from 2019 to 2022, with courses such as Physics Laboratory (PH 102), Electronics Lab (PH 410), Preparatory Physics (PH 001), and Numerical Methods and Programming (PH 513 and PH 605). Through this hands-on teaching, she shared her knowledge of ion-solid interactions and nanoscale patterning with her students, providing them with a comprehensive and experimental understanding of physics.

Contributions and Research Focus 🔍

At the core of Dr. Rakhi’s work lies her fascination with ion-induced modifications and nanostructuring of solid surfaces. Her primary research explores how energetic ions interact with solid surfaces, creating unique surface morphologies and nanostructures. The study of these nanoscale surface patterns is essential for developing next-generation materials with customized surface properties. Dr. Rakhi’s research examines both the kinetic morphology of surfaces and the dynamics of self-organization of patterns at the nanoscale. These findings aim to contribute to the field by uncovering new pattern scenarios that could intrigue theoretical researchers and expand the fundamental understanding of surface structures. Her goal is to utilize these insights for practical applications, such as in advanced materials engineering where controlled nanoscale patterning can yield materials with exceptional properties in electronics, optics, and catalysis.

Accolades and Recognition 🏅

Dr. Rakhi’s academic rigor and dedicated research have earned her respect and recognition within her academic community. As a Senior Research Fellow in the Department of Physics at IIT Ropar, she has demonstrated a commitment to excellence, evident through her publications, presentations, and contributions to the institute. She has also been active on platforms like ResearchGate, where her research findings and insights contribute to a global dialogue among scholars and practitioners in condensed matter physics and nanotechnology. Through her involvement in academia and research, she has established herself as a promising researcher in ion-solid interaction studies, with her work attracting the attention of peers both within India and internationally.

Impact and Influence 🌍

Dr. Rakhi’s work stands out due to its pioneering exploration of random kinetic morphology and the self-organization of nanoscale surface structures. By probing the intricate patterns that emerge from ion irradiation, her research offers insights that could lead to breakthroughs in controlling and harnessing nanostructured surfaces for high-tech applications. Her influence extends to her students as well, whom she mentors in laboratory and course settings, fostering their curiosity and encouraging the next generation of physicists and material scientists. Her teaching in courses such as Physics Laboratory and Preparatory Physics provides a hands-on learning experience that imparts practical knowledge essential for understanding complex physics concepts.

Legacy and Future Contributions 🌟

Looking ahead, Dr. Rakhi’s contributions to ion-solid interactions and nanoscale patterning have the potential to set a foundation for further advancements in materials science and nanotechnology. Her work on controlled nanoscale structuring could be instrumental in fields like biotechnology, electronics, and energy storage, where the ability to design and manipulate surfaces at the atomic level opens new doors for innovation. She envisions further developing techniques to control surface morphology with even greater precision, which could lead to more practical applications and collaborations across disciplines.As Dr. Rakhi continues her journey in research, she is poised to leave an impactful legacy in experimental condensed matter physics. Her commitment to bridging experimental findings with theoretical insights will likely fuel future collaborations with researchers across the globe. Dr. Rakhi’s research not only adds to the scientific knowledge in her field but also promises to be a cornerstone for future discoveries, inspiring scientists, educators, and students alike to delve deeper into the fascinating world of nanoscale science and materials engineering.

Citations

A total of 19 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        19
  • h-index           6
  • i10-index        2

Notable Publications 

  • Title: “Nanopatterning Induced Si Doping in Amorphous Ga₂O₃ for Enhanced Electrical Properties and Ultra-Fast Photodetection”
    Authors: Kaur, D., Rakhi, Posti, R., Sarkar, S., Kumar, M.
    Journal: Small
    Year: 2024.
  • Title: “Prolonged pattern coarsening in ion irradiated swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Vacuum
    Year: 2024.
  • Title: “Impact of intermittent sputtering on the ordering of triangular surface topography”
    Authors: Rakhi, Sarkar, S.
    Journal: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Year: 2024.
  • Title: “Towards ordered Si surface nanostructuring: role of an intermittent ion beam irradiation approach”
    Authors: Rakhi, Muñoz-García, J., Cuerno, R., Sarkar, S.
    Journal: Physica Scripta
    Year: 2023.
  • Title: “Abrupt pattern transitions in argon ion bombarded swinging Si substrates”
    Authors: Rakhi, Sarkar, S.
    Journal: Physical Review B
    Year: 2022.

Dibyendu Sekhar Bag | Materials Science | Outstanding Scientist Award

Dr. Dibyendu Sekhar Bag | Materials Science | Outstanding Scientist Award

Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO, India

Author Profile

Early Academic Pursuits 🎓📚

Dr. Dibyendu Sekhar Bag embarked on a rigorous academic journey that laid a strong foundation for his scientific pursuits and contributions. Born with a keen interest in the sciences, Dr. Bag completed his secondary and higher secondary education with first-division distinctions from the West Bengal Board of Secondary Education in 1983 and the West Bengal Council of Higher Secondary Education in 1985, respectively. His academic prowess led him to Burdwan University, where he pursued a Bachelor of Science degree with honors in Chemistry, accompanied by Physics and Mathematics. His undergraduate years were marked by diligence and a budding passion for chemical sciences, culminating in his achievement of a second-division grade.Eager to delve deeper into the world of chemistry, Dr. Bag pursued a Master’s degree in Chemistry at the prestigious Indian Institute of Technology (IIT), Kharagpur, where he specialized in all facets of the field, including Physical, Organic, Inorganic, and Polymer Chemistry. His outstanding performance earned him an impressive CGPA of 9.16 out of 10, reflecting his dedication and academic excellence. Driven by a desire to further his knowledge, he continued his studies at IIT Kharagpur, where he attained a Ph.D. in Polymer Science in 1996. His doctoral research laid the groundwork for his future contributions in the field of material science and polymers, setting him on a path to innovation and discovery.

Professional Endeavors 🏛️🔬

Dr. Bag’s professional journey began with two formative years in industrial research and development at the Ahmedabad Textile Industry’s Research Association. This role allowed him to gain invaluable practical experience in the textile industry, particularly in the field of material applications, where he could apply his expertise in polymer science to address real-world challenges.Following his industrial experience, Dr. Bag transitioned to academia, where he took on teaching and research responsibilities at the Birla Institute of Technology, Mesra. His role in academia not only allowed him to share his knowledge with aspiring scientists but also enabled him to further his own research capabilities. This two-year period in academia marked an essential phase in his career, combining research and mentorship as he worked closely with students and young researchers, nurturing their interest in chemistry and materials science.In 1999, Dr. Bag joined the Defence Materials & Stores Research & Development Establishment (DMSRDE) under the Defence Research and Development Organisation (DRDO) in Kanpur. Over the next 24 years, he dedicated his career to advancing India’s defense capabilities, working on projects essential to national security and defense technology. Rising to the prestigious position of Scientist-G and Additional Director, Dr. Bag became a pivotal figure at DMSRDE, where he focused on materials and stores research, contributing to numerous breakthroughs that have reinforced India’s defense sector.

Contributions and Research Focus 🔍📈

Dr. Bag’s research primarily focuses on polymer science, with a particular emphasis on its applications in defense technology. His work at DMSRDE has involved developing advanced polymeric materials that are vital for the production of durable, high-performance defense equipment. His expertise in polymers has led to the creation of materials that withstand extreme conditions, a crucial requirement in defense applications. Furthermore, his interdisciplinary approach has seen him integrate principles of organic, inorganic, and physical chemistry to push the boundaries of material science, leading to innovative solutions that address the unique challenges faced by the defense sector.Beyond his research in polymers, Dr. Bag has contributed significantly to other aspects of defense materials research. His work encompasses developing environmentally sustainable materials, enhancing the longevity and durability of defense assets, and improving the functionality of materials used in critical defense systems. His contributions have not only strengthened India’s defense materials technology but have also established him as a thought leader in material science research.

Accolades and Recognition 🏆🌟

Over the years, Dr. Bag has earned multiple accolades for his contributions to defense research and material sciences. His innovative research, commitment to excellence, and substantial contributions to defense technology have earned him respect and recognition within DRDO and among the broader scientific community. His rise to the esteemed position of Scientist-G/Additional Director is a testament to his dedication and expertise, and his work continues to inspire peers and young researchers alike.

Impact and Influence 🌐💡

Dr. Bag’s influence extends far beyond the boundaries of DMSRDE and DRDO. His work in polymer science and material engineering has had a profound impact on India’s defense technology, ensuring that the armed forces are equipped with materials that enhance performance and reliability. His research has not only fortified the defense capabilities of the country but has also set new benchmarks in the field of material science. His role in the development of high-performance polymers has paved the way for further advancements, inspiring future researchers to explore new applications of polymer science.In addition to his contributions to defense technology, Dr. Bag’s academic and professional journey serves as an inspiration to students, researchers, and fellow scientists. His dedication to continuous learning and innovation embodies the spirit of scientific inquiry, encouraging others to pursue their research goals with passion and perseverance.

Legacy and Future Contributions 🔮🚀

As Dr. Dibyendu Sekhar Bag continues his work at DMSRDE, his legacy is already taking shape. His contributions to polymer science and defense technology will undoubtedly have a lasting impact, influencing future research and development in material science. Dr. Bag’s commitment to excellence and innovation is a guiding light for upcoming generations of scientists and researchers, who will benefit from his pioneering work and dedication to national service.Looking forward, Dr. Bag aims to continue exploring new frontiers in material science, with a focus on sustainable and resilient materials. His ongoing research is likely to yield further advancements in defense technology, positioning India as a leader in innovative defense materials. With a career marked by scientific rigor, impactful contributions, and a commitment to national progress, Dr. Bag’s journey exemplifies the potential of dedicated research to shape the future of defense and material sciences. His legacy as a scientist, mentor, and innovator will undoubtedly endure, inspiring future generations to pursue excellence in their own academic and professional endeavors.

Citations

A total of 695 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         695
  • h-index           66
  • i10-index        17

Notable Publications 

  • Title: High-performance PPS/PEEK blend and its composites with milled carbon fiber: Study on their mechanical, thermal and dielectric properties
    Authors: Tiwari, S., Bag, D.S., Mishra, P., Lal, G., Dwivedi, M.
    Journal: Polymer Composites
    Year: 2024.
  • Title: Formulation and Characterization of Silane Modified Acrylic Based Transparent Organic-Inorganic Hybrid Coatings for Improved Instrumented Indentation Hardness of PMMA
    Authors: Das, V., Singh, A.S., Singh, A., Mishra, P., Bag, D.S.
    Journal: Silicon
    Year: 2024.
  • Title: Poly (ethylene-co-methacrylic acid) (PEMA) ionomers and their applications including self-healing and shape memory applications
    Authors: Tiwari, S., Bag, D.S., Dwivedi, M.
    Journal: Journal of Polymer Research
    Year: 2024.
  • Title: Self-healing thermoplastic elastomeric blends of zinc-ionomer and styrene–butadiene–styrene block copolymer and their characterization
    Authors: Tiwari, S., Bag, D.S., Dwivedi, M.
    Journal: Polymer International
    Year: 2024.
  • Title: Effect of in-situ Incorporated Silica Particles on Properties of Polyurethane Elastomer
    Authors: Tripathi, N., Singh, A.S., Banshiwal, J.K., Pandey, P., Bag, D.S.
    Journal: Silicon
    Year: 2024.

P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Dr. P.Arockia Michael Mercy | Materials Science | Best Researcher Award

Madonna Arts and Science College for Women, India

Author Profile

Early Academic Pursuits 🎓

Dr. S.R.P. Arockia Michael Mercy embarked on her academic journey with a focus on Physics, completing her Bachelor of Science in Physics from MK University in 2005. Her passion for the subject led her to pursue a Master’s in Physics at Arul Anandar College, affiliated with MK University, completing it in 2017. This foundational education ignited her curiosity in the fields of microstrip patch antennae and solar cells, motivating her to delve further into research. Driven by her dedication to innovation and scientific advancement, she earned her PhD in Physics from MK University in 2023, marking a significant milestone in her academic journey.

Professional Endeavors and Teaching Experience 👩‍🏫

Dr. Mercy’s career as an educator began with her role as an Assistant Professor at Madonna Arts and Science College for Women, where she has devoted eight years to shaping the minds of future scientists. With her teaching interests spanning various subjects, including Physics laboratory practices, and personal passions like choir, dance, and hand arts, she has contributed to the academic and holistic growth of her students. Her dedication to teaching goes beyond mere theoretical knowledge, as she emphasizes hands-on learning and practical applications of physics concepts in real-world settings. Her versatility and passion for various forms of art also enrich her classroom experience, creating a dynamic and inclusive learning environment.

Contributions and Research Focus 🔬

Dr. Mercy’s research interests lie primarily in Microstrip Patch Antenna and Solar Cells, fields that have tremendous potential for impacting technology and sustainability. Microstrip patch antennas, known for their compact size and efficiency, are essential in modern communication systems, from mobile devices to satellite applications. Dr. Mercy’s research contributes to advancements in antenna technology, focusing on enhancing signal clarity, reducing interference, and improving overall efficiency. Her work in solar cells aligns with the global pursuit of renewable energy sources. By exploring innovative materials and designs, she contributes to making solar technology more accessible and efficient, aiming to reduce environmental impact and dependence on fossil fuels.

Accolades and Recognition 🏅

Throughout her career, Dr. Mercy has been recognized for her dedication to education and commitment to research. Her innovative approaches in the classroom and contributions to her research areas have earned her respect among colleagues and students alike. Her research in microstrip patch antennae and solar cells is particularly noteworthy in academic circles, as these fields are both highly competitive and impactful. She has also participated in various academic conferences, sharing her findings and insights with fellow researchers and contributing to the broader scientific community.

Impact and Influence 🌍

Dr. Mercy’s influence extends beyond her classroom, reaching her students, colleagues, and the scientific community. As a mentor, she encourages her students to pursue their passions, fostering a culture of curiosity and perseverance. Her work in microstrip patch antennae and solar cells is relevant not only in academia but also in industries focused on communications and renewable energy. By aligning her research with global needs for sustainable energy and advanced communication technology, she has positioned herself as an advocate for positive change and innovation.

Legacy and Future Contributions 🚀

As Dr. Mercy continues her journey in academia and research, her contributions promise to leave a lasting legacy. Her students benefit not only from her knowledge in physics but also from her holistic approach to learning, which includes arts and creative thinking. Her ongoing research in microstrip patch antennae and solar cells holds the potential for groundbreaking discoveries that could influence these fields for years to come. As she expands her research and engages in collaborative projects, Dr. Mercy aims to inspire future generations of physicists and researchers to pursue innovation and sustainability.

Citations

A total of 21 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         21
  • h-index           12
  • i10-index        3

Notable Publications 

  • Title: Novel nanocomposite based microstrip patch antenna for C and X band applications
    Author(s): Mercy, P.A.M.
    Journal: Materials Chemistry and Physics
    Year: 2024.
  • Title: Gain Enhancement of Composite Photonic Crystal Microstrip Patch Antenna Inspired by Maxwell Garnett Model for C-Band, X-Band and Ku Band Applications
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: Comparative Study of Polarization-Dependent Conversion Efficiency of GaAs and Si Solar Cells at Oblique Incident Angles Using Surface DLAR Coating of MgF2/ZnSe
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Crystal Research and Technology
    Year: 2024.
  • Title: A Comparative Study of Diverse RF-MEMS Switch Design Concepts Experimentally Verified up to 110 GHz for Beyond-5G, 6G and Future Networks Applications
    Author(s): Iannacci, J., Tagliapietra, G., Donelli, M., Guha, K., Lenka, T.R.
    Journal: Lecture Notes in Electrical Engineering
    Year: 2024.
  • Title: Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation
    Author(s): Mercy, P.A.M., Wilson, K.S.J.
    Journal: Applied Surface Science Advances
    Year: 2023.

Vudata Venkata Basava Rao | Biotechnology | Best Researcher Award

Prof Dr. Vudata Venkata Basava Rao | Biotechnology | Best Researcher Award

University College of Technology, Osmania University, India

Author Profile

Early Academic Pursuits 🎓

Born on July 7, 1964, Prof. V. Venkata Basava Rao’s academic journey began with a solid foundation in Chemical Engineering. His quest for knowledge led him to pursue a B.Tech in Chemical Engineering from Andhra University, graduating in 1986. Following this, Prof. Rao’s thirst for advanced learning took him to the prestigious Indian Institute of Technology, Kharagpur (IIT-Kharagpur), where he obtained his M.Tech in 1988 and Ph.D. in 1991. His early academic accomplishments were just the beginning of an illustrious career that would leave a lasting imprint on the field of chemical engineering.During these formative years, Prof. Rao not only mastered the core principles of chemical engineering but also developed a strong interest in research, particularly in areas that would later shape his career such as Reactive Separations and Fluidized Bed Technology. These early academic pursuits gave him the intellectual rigor needed to contribute to both academia and industry, building a firm base for his future endeavors.

Professional Endeavors 🚀

With 4 years of industrial experience and an impressive 27 years of teaching, Prof. Rao’s career reflects a perfect blend of academia and real-world application. His professional journey began in industry, where he honed his practical skills, but his passion for teaching and research drew him back to academia. Today, Prof. Rao serves as a Professor of Chemical Engineering and Director of Academics, Research & Development at the University College of Technology (Autonomous), Osmania University, Hyderabad.Over the years, Prof. Rao has supervised 23 Ph.D. candidates and guided 72 M.Tech theses, shaping the careers of budding engineers and researchers. His students recognize him not just for his technical expertise, but for his unwavering dedication to teaching. His leadership and academic insight have also been instrumental in shaping the research direction of the University College of Technology, where he continues to drive innovation.

Contributions and Research Focus 🔬

Prof. V. Venkata Basava Rao’s research contributions are vast and varied, with a special focus on Reactive Separations, Circulating & Tapered Fluidized Bed Technology, and Adsorption using special adsorbents. His research is centered around optimizing chemical processes, intensifying operations, and discovering novel applications of existing technologies. His work in Process Intensifications aims at making industrial processes more efficient, sustainable, and eco-friendly.One of his significant contributions has been in the area of Fluidized Bed Technology, where he explored its applications for novel processes. Fluidized beds are widely used in industries for processes like combustion, gasification, and chemical reactions, and Prof. Rao’s research has enhanced the understanding of their mechanics, thereby improving their industrial application. Additionally, his work in Adsorption using special adsorbents has paved the way for new materials that can be used in separation processes, a critical aspect of industries ranging from water treatment to pharmaceuticals.His research output is well-documented, with 66 technical papers published in reputed international journals. Furthermore, Prof. Rao has presented his findings at 16 international conferences, having traveled to the United States, Canada, Germany, and Singapore, contributing to global discussions on chemical engineering innovations.

Accolades and Recognition 🏆

Prof. Rao’s distinguished career has earned him numerous accolades. In 1999, he was honored with the Young Scientist Award by the Andhra Pradesh Council for Science and Technology (APCOST), a recognition of his early contributions to the field. This marked the beginning of a series of awards that recognized his expertise and influence in chemical engineering.In 2008, Prof. Rao was ranked 5th out of 10 in a survey conducted by 24/7 Customer in Education to identify “The Best Professors,” an accolade bestowed by the student community for his excellence in teaching. His impact as an educator is well-recognized by his students, who have consistently praised his ability to make complex topics understandable and engaging.Another feather in his cap was the Outstanding Chemical Engineer of the Year 2009 (under 45 years) award, conferred by Hindustan Lever. This prestigious biennial award underscored his contribution to chemical engineering, solidifying his reputation as one of India’s leading engineers under the age of 45.In addition to these, Prof. Rao has been elected four times as a Council Member for the Indian Institute of Chemical Engineers (IIChE), and he has served as Registrar, Honorary Joint Secretary, Vice President, and eventually the National President of IIChE in 2020. His leadership roles within IIChE have allowed him to influence policies and initiatives that support chemical engineers across India.

Impact and Influence 🌍

Prof. V. Venkata Basava Rao’s influence extends beyond academia and research, as he is also a Fellow of the Institution of Engineers (FIE) and a Chartered Engineer. His contributions to the field of chemical engineering have earned him national and international recognition, and his participation in international conferences has helped shape the global discourse on chemical engineering technologies.His legacy is not just in the papers he has published or the students he has guided, but in the tangible impact of his research on industries and society. His work on adsorption and process intensification is particularly relevant in today’s world, where there is an increasing need for sustainable and efficient chemical processes.

Legacy and Future Contributions 🔮

As a leader in chemical engineering, Prof. Rao’s legacy is already well-established, but his contributions are far from over. His ongoing research in areas like Reactive Separations and Fluidized Bed Technology continues to break new ground, offering solutions to some of the most pressing challenges in industrial chemistry.Prof. V. Venkata Basava Rao is an inspiring figure whose work exemplifies the perfect combination of academic rigor, industrial application, and a passion for teaching. His journey from a young scholar at Andhra University to a global thought leader in chemical engineering serves as a testament to his dedication and intellectual brilliance. As he continues to contribute to the field, his future contributions are sure to leave an indelible mark on both academia and industry.

Citations

A total of 359 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        359
  • h-index          19
  • i10-index        5

Notable Publications 

  • Chitosan Nanobubbles Development and Evaluation for the Delivery of Sunitinib-An Anticancer Agent
    Authors: Kishore Kumar, M., Jaya Prakash, D., Basava Rao, V.V.
    Journal: International Journal of Applied Pharmaceutics
    Year: 2022.
  • Formulation and Evaluation of Solid-Supersaturable-SNEDDS of Ibrutinib
    Authors: Navaneetha, K., Basava Rao, V.V.
    Journal: International Journal of Applied Pharmaceutics
    Year: 2022.
  • Proliposome: A Novel Solution for the Stability of Liposomes – A Review
    Authors: Shaik, N.B., Lakshmi, P.K., Basava Rao, V.V.
    Journal: International Journal of Pharmaceutical Sciences and Nanotechnology
    Year: 2022.
  • Formulation and Characterization of Carvedilol In situ Gels for Oral Delivery-In vitro and In vivo Pharmacokinetic Studies
    Authors: Madhavi Harika, S.K., Sudhakar, M., Basava Rao, V.V.
    Journal: Analytical Chemistry Letters
    Year: 2022.
  • Surface Modification of Sulfonated Polyethersulfone Membrane with Polyaniline Nanoparticles for Application in Direct Methanol Fuel Cell
    Authors: Nagar, H., Sahu, N., Basava Rao, V.V., Sridhar, S.
    Journal: Renewable Energy
    Year: 2020.

Ankush Chauhan | Biomaterials | Best Researcher Award

Dr. Ankush Chauhan | Biomaterials | Best Researcher Award

Chettinad Academy of Research and Education- India

Author Profile

Early Academic Pursuits 📚🎓

Born on December 24, 1992, in Shimla, Himachal Pradesh, India, Dr. Ankush Chauhan’s academic journey began at Dayanand Public School, where he completed his secondary education in 2009. His passion for science, particularly physics, led him to continue his higher secondary education at Army Public School, Dagshai, Himachal Pradesh, graduating in 2011.Dr. Chauhan’s formal education in physics started with a B.Sc. degree from Rajiv Gandhi Government College, Shimla, in 2016. He then pursued an M.Sc. in Physics at Shoolini University, Solan, from 2016 to 2018. It was during these years that his fascination with nanotechnology and condensed matter physics took root. Dr. Chauhan’s dedication and love for physics were apparent from the start, laying a solid foundation for his future research endeavors.

Professional Endeavors 🧑‍🔬✨

After completing his Ph.D. in Physics from Shoolini University in 2021, Dr. Ankush Chauhan began his career as a Project Associate at the same institution. He then served as a Research Associate from 2021 to 2022, further developing his research skills and deepening his expertise in the field of nanotechnology. During these years, Dr. Chauhan worked extensively on the synthesis of metal oxide nanoparticles, perovskite, and magnetic materials using six different techniques, such as sol-gel, hydrothermal synthesis, and green synthesis. His skills in these complex procedures have made him an expert in synthesizing and analyzing advanced materials that have practical applications in industries like electronics and renewable energy.At present, Dr. Chauhan holds the prestigious position of Head of the Centre for Herbal Pharmacology and Environmental Sustainability at Chettinad Academy of Research and Education. In this role, he leads groundbreaking research in the intersection of herbal pharmacology and environmental conservation. His interdisciplinary approach combines physics with environmental sustainability, showcasing his versatility as a scientist.

Contributions and Research Focus 🧪🌿

Dr. Chauhan’s research focus revolves around nanotechnology and condensed matter physics. He has made considerable contributions to the understanding of metal oxide nanoparticles, perovskites, and magnetic materials, with practical applications in energy, electronics, and environmental sustainability. His research has resulted in 72 publications in Scopus-indexed journals and an impressive H-index of 18, reflecting the significant impact his work has had on the scientific community.Dr. Chauhan’s expertise in XRD, TEM, SEM, XPS, UV spectroscopy, dielectric spectroscopy, impedance spectroscopy, Raman analysis, and FTIR has allowed him to analyze complex data and interpret it in ways that provide insight into material properties. His work is crucial for developing new materials that are both sustainable and efficient for industrial applications.

Accolades and Recognition 🏆🎖️

With 13 patents granted, Dr. Chauhan is a recognized innovator in his field. His inventions, which range from methods for synthesizing advanced materials to applications in environmental sustainability, have been widely acknowledged. His patents serve as a testament to his ingenuity and the real-world relevance of his research.In addition to his patents, Dr. Chauhan has been recognized in both national and international forums. His work has gained attention not only for its scientific rigor but also for its applicability to current global challenges such as renewable energy and environmental sustainability.

Impact and Influence 🌍🔋

Dr. Chauhan’s influence extends beyond academia. Through his leadership at the Centre for Herbal Pharmacology and Environmental Sustainability, he has spearheaded projects that aim to find sustainable solutions to pressing environmental problems. His research into using nanotechnology for environmental purposes is part of a broader movement toward greener technologies, a field that is becoming increasingly important as the world grapples with climate change and resource depletion.Moreover, his collaborations with interdisciplinary teams have broadened the scope of his impact, making him a key figure in both the physics and environmental sustainability communities. His work in herbal pharmacology, combined with his background in physics, exemplifies how different scientific disciplines can converge to address complex issues.

Legacy and Future Contributions 🚀🌟

As a scientist in his early 30s, Dr. Ankush Chauhan’s legacy is already shaping up to be one of profound innovation and interdisciplinary collaboration. His contributions to nanotechnology, condensed matter physics, and environmental sustainability are paving the way for future research and applications in these fields. His patents, publications, and leadership roles signify the lasting impact he will have on both scientific progress and sustainable development.Looking ahead, Dr. Chauhan’s future contributions are likely to focus on integrating advanced material science with environmental sustainability. His work has the potential to revolutionize how we approach environmental challenges, using physics and nanotechnology to create solutions that benefit both society and the planet. 🌿🔬

Citations

A total of 1389 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        1389
  • h-index           77
  • i10-index        19

Notable Publications 

  • Eco-Friendly Synthesis of Ni/NiO Nanoparticles Using Gymnema sylvestre Leaves Extract for Antifungal Activity
    Author(s): Ankush Chauhan (and co-authors)
    Journal: Journal of Composites Science
    Year: 2023.
  • Synthesis of ZnO NPs using Cow Urine as a Reducing Agent for Antimicrobial Application
    Author(s): Ankush Chauhan (and co-authors)
    Journal: AIP Conference Proceedings
    Year: 2022.
  • Structural, Morphological, and Optical Properties of Strontium Doped Lead-Free BCZT Ceramics
    Author(s): Ankush Chauhan (and co-authors)
    Journal: Ceramics International
    Year: 2021.
  • Biomedical Potential of Hydrogels: A Multifaceted Approach to Innovative Medication Delivery
    Author(s): Ankush Chauhan (and co-authors)
    Journal: Emergent Materials
    Year: 2024.Tuning of Structural, Dielectric, and Electronic Properties of Cu Doped Co–Zn Ferrite
    Author(s): Ankush Chauhan (and co-authors)
    Journal: Magnetochemistry
    Year: 2023.