MOHD TAAZEEM ANSARI | MATERIAL SCIENCE | Best Researcher Award

Dr. MOHD TAAZEEM ANSARI | MATERIAL SCIENCE | Best Researcher Award

JAMIA MILLIA ISLAMIA NEW DELHI, India

Author Profile

🌱 Early Academic Pursuits

Dr. Mohd Taazeem Ansari embarked on his academic journey with a deep-rooted passion for Electronics 🔌 and Applied Physics ⚛️. He completed his Bachelor of Science (Hons) in Electronics from the University of Delhi (2009–2012) with an impressive 74.60% 🧠. During this foundational phase, his curiosity in embedded systems and microprocessor technology led him to develop a “Security Alarm System” based on the 8085 microprocessor—a project that showcased both his analytical skills and hands-on approach.

His academic voyage continued with a Master of Science in Electronics at Jamia Millia Islamia (2012–2014), where he further refined his expertise. Scoring 81.60%, he demonstrated excellence through his dissertation project, where he designed a “Software for Simulation of Op-Amp Circuits” using C programming 💻. His scientific curiosity extended beyond software, as seen in his internship, which explored the dielectric properties of sol-gel-derived Barium Strontium Titanate, providing a strong base in material science 🔬 and solid-state physics.

🎓 Professional Endeavors

Dr. Ansari pursued a Ph.D. in Applied Physics at Jamia Millia Islamia, New Delhi (2017–2021), focusing on the modelling of miniaturized functional devices using quantum mechanical methods for applications in Nano Electronics 🤖. His research aligned with global trends in quantum materials, nanoelectronics, and device fabrication, positioning him as a competent scientist in the cutting-edge domain of computational material science 🌐.

Currently associated with the Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, Dr. Ansari contributes both as an academic and a researcher, guiding students and advancing theoretical models for practical nanoelectronic devices ⚙️.

🔬 Contributions and Research Focus

Dr. Ansari’s research explores the quantum mechanical modeling of nanoscale devices, a field crucial for the development of next-generation transistors, sensors, and optoelectronic systems 🌈. His work bridges computational physics and device engineering, and he has hands-on experience with advanced simulation tools like ATK-VNL (QuantumWise/Synopsys), Quantum Espresso (BURAI), and NanoDcal 🔍.

He has also utilized Agilent LCR meters in practical experiments to derive key parameters such as dielectric constants and impedance, combining computational and experimental approaches for a holistic understanding of material behavior.

🏅 Accolades and Recognition

Dr. Ansari has received multiple awards in recognition of his academic brilliance. Notably:

  • 🏆 Urdu Academy Excellence Award – Received three times for outstanding achievement in the Urdu language, showcasing his cultural and linguistic versatility 📜.

  • 🎓 Central Government Minority Scholarship – A prestigious award received twice, reflecting consistent academic merit and commitment to higher learning.

  • 🥇 Served as a City Operationalist during the Commonwealth Games 2010, contributing to a large-scale international event, demonstrating strong organizational and interpersonal skills.

🌍 Impact and Influence

Dr. Ansari’s interdisciplinary expertise in physics, electronics, and materials science positions him uniquely at the confluence of research, education, and technological innovation ⚡. His ability to mentor students, navigate both theoretical and experimental domains, and develop real-world applicable models enhances the research ecosystem at Jamia Millia Islamia and beyond.

His contributions are especially impactful in the context of sustainable nano-device modeling and green electronics 🌱, essential in today’s push toward eco-friendly technology ♻️.

📘 Legacy and Future Contributions

As Dr. Ansari continues to evolve in his academic career, his vision is set on the advancement of nanoelectronics, particularly in device miniaturization, sensor technology, and quantum simulations 🔗. With a strong command over both programming tools like Python 🐍 and research software, he is well-equipped to lead collaborative projects at the intersection of simulation and hardware implementation.

In the future, his work is likely to influence not just academia but also industrial applications of nano-functional materials and AI-driven simulation environments 🤖📊. Dr. Ansari’s journey reflects a rare blend of scientific rigor, cultural depth, and technological vision—hallmarks of a future-ready scholar 🌟.

Citations

A total of 81 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations             81
  • h-index               04
  • i10-index            02

Notable Publications 

  • Title: Fabrication of a zinc oxide/alginate (ZnO/Alg) bionanocomposite for enhanced dye degradation and its optimization study
    Authors: V.U. Siddiqui, A. Ansari, M.T. Ansari, M.K. Akram, W.A. Siddiqi
    Journal: RSC Advances
    Year: 2022

  • Title: Optimization of facile synthesized ZnO/CuO nanophotocatalyst for organic dye degradation by visible light irradiation using response surface methodology
    Authors: V.U. Siddiqui, A. Ansari, M.T. Ansari, M.K. Akram, W.A. Siddiqi, A.M. Alosaimi, et al.
    Journal: Catalysts
    Year: 2021

  • Title: Analyzing the electronic and conductive characteristics of zigzag graphene nanoribbons upon NOx and N₂O Adsorption: An ab-initio study
    Authors: M.M. Husain, M.T. Ansari, A. Almohammedi
    Journal: Materials Today Communications
    Year: 2024

  • Title: Occurrence of nonohmic trend in the ballistic transport mode of a modelled low dimensional device capable of performing electronic functions
    Authors: M.T. Ansari, A. Almohammedi, M. Rafat, M.M. Husain
    Journal: Superlattices and Microstructures
    Year: 2021

  • Title: Influence of varying carbon oxides concentrations on the selectivity of an electrical sensor utilizing graphene nanoribbons
    Authors: M.M. Husain, M.T. Ansari, A. Almohammedi
    Journal: Micro and Nanostructures
    Year: 2024

Madhavi Dalsaniya | Materials Science | Best Researcher Award

Ms. Madhavi Dalsaniya | Materials Science | Best Researcher Award

Warsaw University of Technology, India

Author Profile

Early Academic Pursuits 🎓

Madhavi H. Dalsaniya’s academic journey is a testament to her dedication and passion for the field of material science. Her formative years in education began at St. Francis High School in Jamnagar, Gujarat, India, where she achieved Distinction in her Secondary Education (2011). This early academic success paved the way for her further pursuit of knowledge in the field of Physics. Madhavi continued her academic endeavors at Sunrise School in Jamnagar, where she completed her Higher Secondary Education in 2013, securing First Class. With a solid foundation in physics, she pursued her undergraduate studies at The Maharaja Sayajirao University of Baroda (MSU), Vadodara, Gujarat, where she earned a B.Sc. in Physics in 2016, finishing with Second Class.Her strong academic performance led her to pursue a Master’s degree in Physics at the same institution, The Maharaja Sayajirao University of Baroda, where she graduated in 2018 with First Class honors. This period of advanced studies sparked her growing interest in Material Science, which later became the focal point of her career. It was during her Master’s that she developed a keen interest in the properties of materials and their potential applications, setting the stage for her future academic endeavors.

Professional Endeavors and Research Focus 🔬

Madhavi H. Dalsaniya’s professional journey has been marked by a steadfast commitment to the study and application of material science. Currently, she is pursuing her Ph.D. in Material Science at the prestigious Warsaw University of Technology in Warszawa, Poland, a position she has held since October 2020. The focus of her doctoral research is on the properties and applications of materials in various fields, contributing to the growing body of knowledge in material science. Her work involves exploring new materials with enhanced properties and understanding their structural characteristics at the atomic and molecular levels.As a doctoral student, Madhavi has not only been working diligently on her research but also actively engaging with the scientific community through academic conferences, seminars, and workshops. She has established herself as a budding researcher in the field, gaining valuable insights and collaborating with experts in the field of material science. Her research contributions focus on novel materials that can be used in a wide array of industries, including electronics, nanotechnology, and renewable energy.

Contributions and Research Focus 🌍

Madhavi’s research is making significant strides in the field of material science. She focuses on advancing the understanding of material properties, which can potentially lead to groundbreaking advancements in various technological applications. Her research encompasses a range of topics, including the study of nanomaterials, their synthesis, characterization, and potential applications in energy storage and conversion systems. By investigating the unique properties of different materials at the microscopic level, Madhavi aims to contribute to the development of more efficient and sustainable materials for future technologies.One of her key research areas is the exploration of new materials with enhanced conductivity and stability for use in electronic devices. She is also interested in the role of nanomaterials in renewable energy, including solar cells and energy storage devices. Through her work, Madhavi aims to push the boundaries of material science and contribute to the creation of more sustainable and efficient solutions for contemporary challenges.

Accolades and Recognition 🏆

Although still early in her career, Madhavi has already earned recognition for her academic achievements and research contributions. Her dedication to the field of material science has not gone unnoticed, and she has been acknowledged for her outstanding performance as a doctoral student. The first-class honors she received during her M.Sc. program laid the foundation for her future academic success. As a Ph.D. student, Madhavi has been invited to present her research at several international conferences, where her work has garnered attention for its originality and scientific rigor.Her involvement in the research community and her commitment to advancing material science have also led to opportunities for collaboration with prominent researchers in her field. Her work has contributed to expanding the knowledge base surrounding the application of nanomaterials in various industries, solidifying her reputation as a promising researcher.

Impact and Influence 🌟

Madhavi H. Dalsaniya’s work is poised to make a lasting impact on the field of material science. By advancing our understanding of the properties of materials, her research is expected to lead to innovations that will drive the development of new technologies. In particular, her exploration of nanomaterials and their potential applications in renewable energy and electronics could play a significant role in addressing some of the world’s most pressing challenges, such as energy storage and climate change.Her influence extends beyond her research contributions, as she serves as a role model for aspiring scientists and researchers, particularly women in STEM fields. Madhavi’s academic journey and perseverance in pursuing advanced research serve as an inspiration to others who seek to contribute to scientific advancements and make a meaningful impact on society.

Legacy and Future Contributions 🌱

Looking toward the future, Madhavi H. Dalsaniya is on track to make significant contributions to the world of material science. As she continues her Ph.D. research, her work will undoubtedly leave a lasting legacy in the field. She aims to continue exploring the applications of new materials in the realms of energy, electronics, and sustainability. The potential for her research to shape future technologies is immense, and she is well-positioned to be a leading figure in the development of novel materials that address global challenges.Madhavi’s commitment to advancing material science, coupled with her passion for research and innovation, ensures that her future contributions will have a profound impact on both the scientific community and society at large. As she progresses in her academic career, her work is expected to inspire future generations of scientists and engineers, making her a key figure in the evolution of material science. 🌍🔬

Citations

A total of 106 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         106
  • h-index           12
  • i10-index        05

Notable Publications 

  • Title: Pressure-Dependent Thermal and Mechanical Behaviour of a Molecular Crystal of Bromine
    Authors: Dalsaniya, M.H., Upadhyay, D., Patel, P., Kurzydłowski, K.J., Kurzydłowski, D.
    Journal: Molecules
    Year: 2024.
  • Title: Exploration of Si-N Compounds as High Energy Density Materials
    Authors: Patel, P., Patel, S., Dalsaniya, M.H., Kurzydłowski, K.J., Jha, P.K.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024.
  • Title: High-Pressure Stabilization of Open-Shell Bromine Fluorides
    Authors: Dalsaniya, M.H., Upadhyay, D., Jan Kurzydłowski, K., Kurzydłowski, D.
    Journal: Physical Chemistry Chemical Physics
    Year: 2023.
  • Title: A Density Functional Theory Study on the Assessment of α-CN and α-CP Monolayers as Anode Material in Li-Ion Batteries
    Authors: Patel, P., Patel, S., Chodvadiya, D., Kurzydłowski, K.J., Jha, P.K.
    Journal: Journal of Energy Storage
    Year: 2023.
  • Title: Defects and Doping Engineered Two-Dimensional o-B2N2 for Hydrogen Evolution Reaction Catalyst: Insights from DFT Simulation
    Authors: Chodvadiya, D., Dalsaniya, M.H., Som, N.N., Kurzydłowski, K.J., Jha, P.K.
    Journal: International Journal of Hydrogen Energy
    Year: 2023.

Nishi Parikh | Machine Learning for Material Science | Best Researcher Award

Dr. Nishi Parikh - Machine Learning for Material Science - Best Researcher Award 🏆

Ola Battery Innovation Centre - India

Professional Profiles

Early Academic Pursuits

Her academic journey began with a Bachelor of Science in Chemistry from St. Xavier’s College, Ahmedabad, Gujarat, where she excelled academically and was awarded a Gold Medal. Her passion for chemistry led her to pursue a Master of Science in Organic Chemistry from Gujarat University, where she achieved a remarkable CGPA of 8.10 and received a Silver Medal. Subsequently, she embarked on her doctoral journey, earning a Ph.D. in Science from the Department of Chemistry at Pandit Deendayal Energy University, Gujarat. Her doctoral research focused on "Redefining the crystallization and characterization of halide perovskite by Machine Learning," showcasing her early engagement with machine learning techniques in material science.

Professional Endeavors

Her professional endeavors reflect her dedication to advancing the field of material science through interdisciplinary research and collaboration. She has contributed significantly to the Ola Battery Innovation Centre in Bangalore, India, leveraging her expertise in machine learning and materials science to drive innovation in battery technology. Her research endeavors have been supported by prestigious fellowships, including the PBEEE Merit Fellowship for research stay at INRS, Quebec, and the Swiss Government Excellence Research Fellowship at ZHAW, Zurich.

Contributions and Research Focus in Machine Learning for Material Science

Her research focuses on the intersection of machine learning and material science, with a particular emphasis on material property prediction, computational materials science, and data-driven materials design. Her doctoral research on halide perovskite crystallization and characterization exemplifies her pioneering work in applying machine learning techniques to address complex challenges in materials research. By harnessing the power of machine learning algorithms, Dr. Parikh aims to accelerate materials discovery processes, optimize material properties, and facilitate the design of novel materials for various applications.

Accolades and Recognition

Her contributions to material science and machine learning have been widely recognized through numerous awards and achievements. She has been awarded prestigious fellowships, including the PBEEE Merit Fellowship and the Swiss Government Excellence Research Fellowship, for her outstanding research contributions. Additionally, her research presentations at international conferences and symposiums have earned her accolades, including the Best Poster Award at the "3rd Gen PV in the developing world" conference organized by Newcastle University, UK.

Impact and Influence

Her research has made a significant impact on the field of material science and machine learning, advancing our understanding of materials behavior and enabling the design of innovative materials with tailored properties. Her interdisciplinary approach and collaborative efforts have led to advancements in battery technology, renewable energy, and sustainable materials. Through her research, Dr. Parikh continues to inspire future generations of scientists and engineers, driving innovation and progress in the field of material science.

Legacy and Future Contributions

As she continues her academic and research endeavors, her legacy is defined by her commitment to excellence, innovation, and interdisciplinary collaboration in material science and machine learning. Her future contributions hold the promise of further advancing our understanding of materials behavior, accelerating materials discovery processes, and revolutionizing various industries through the development of advanced materials with tailored properties. Dr. Parikh's pioneering research serves as a catalyst for transformative change in material science and machine learning, shaping the future of technology and sustainability.

Citations

  • Citations               328
  • h-index                  11
  • i10-index               11

Notable Publications