MOHD TAAZEEM ANSARI | MATERIAL SCIENCE | Best Researcher Award

Dr. MOHD TAAZEEM ANSARI | MATERIAL SCIENCE | Best Researcher Award

JAMIA MILLIA ISLAMIA NEW DELHI, India

Author Profile

🌱 Early Academic Pursuits

Dr. Mohd Taazeem Ansari embarked on his academic journey with a deep-rooted passion for Electronics 🔌 and Applied Physics ⚛️. He completed his Bachelor of Science (Hons) in Electronics from the University of Delhi (2009–2012) with an impressive 74.60% 🧠. During this foundational phase, his curiosity in embedded systems and microprocessor technology led him to develop a “Security Alarm System” based on the 8085 microprocessor—a project that showcased both his analytical skills and hands-on approach.

His academic voyage continued with a Master of Science in Electronics at Jamia Millia Islamia (2012–2014), where he further refined his expertise. Scoring 81.60%, he demonstrated excellence through his dissertation project, where he designed a “Software for Simulation of Op-Amp Circuits” using C programming 💻. His scientific curiosity extended beyond software, as seen in his internship, which explored the dielectric properties of sol-gel-derived Barium Strontium Titanate, providing a strong base in material science 🔬 and solid-state physics.

🎓 Professional Endeavors

Dr. Ansari pursued a Ph.D. in Applied Physics at Jamia Millia Islamia, New Delhi (2017–2021), focusing on the modelling of miniaturized functional devices using quantum mechanical methods for applications in Nano Electronics 🤖. His research aligned with global trends in quantum materials, nanoelectronics, and device fabrication, positioning him as a competent scientist in the cutting-edge domain of computational material science 🌐.

Currently associated with the Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, Dr. Ansari contributes both as an academic and a researcher, guiding students and advancing theoretical models for practical nanoelectronic devices ⚙️.

🔬 Contributions and Research Focus

Dr. Ansari’s research explores the quantum mechanical modeling of nanoscale devices, a field crucial for the development of next-generation transistors, sensors, and optoelectronic systems 🌈. His work bridges computational physics and device engineering, and he has hands-on experience with advanced simulation tools like ATK-VNL (QuantumWise/Synopsys), Quantum Espresso (BURAI), and NanoDcal 🔍.

He has also utilized Agilent LCR meters in practical experiments to derive key parameters such as dielectric constants and impedance, combining computational and experimental approaches for a holistic understanding of material behavior.

🏅 Accolades and Recognition

Dr. Ansari has received multiple awards in recognition of his academic brilliance. Notably:

  • 🏆 Urdu Academy Excellence Award – Received three times for outstanding achievement in the Urdu language, showcasing his cultural and linguistic versatility 📜.

  • 🎓 Central Government Minority Scholarship – A prestigious award received twice, reflecting consistent academic merit and commitment to higher learning.

  • 🥇 Served as a City Operationalist during the Commonwealth Games 2010, contributing to a large-scale international event, demonstrating strong organizational and interpersonal skills.

🌍 Impact and Influence

Dr. Ansari’s interdisciplinary expertise in physics, electronics, and materials science positions him uniquely at the confluence of research, education, and technological innovation ⚡. His ability to mentor students, navigate both theoretical and experimental domains, and develop real-world applicable models enhances the research ecosystem at Jamia Millia Islamia and beyond.

His contributions are especially impactful in the context of sustainable nano-device modeling and green electronics 🌱, essential in today’s push toward eco-friendly technology ♻️.

📘 Legacy and Future Contributions

As Dr. Ansari continues to evolve in his academic career, his vision is set on the advancement of nanoelectronics, particularly in device miniaturization, sensor technology, and quantum simulations 🔗. With a strong command over both programming tools like Python 🐍 and research software, he is well-equipped to lead collaborative projects at the intersection of simulation and hardware implementation.

In the future, his work is likely to influence not just academia but also industrial applications of nano-functional materials and AI-driven simulation environments 🤖📊. Dr. Ansari’s journey reflects a rare blend of scientific rigor, cultural depth, and technological vision—hallmarks of a future-ready scholar 🌟.

Citations

A total of 81 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations             81
  • h-index               04
  • i10-index            02

Notable Publications 

  • Title: Fabrication of a zinc oxide/alginate (ZnO/Alg) bionanocomposite for enhanced dye degradation and its optimization study
    Authors: V.U. Siddiqui, A. Ansari, M.T. Ansari, M.K. Akram, W.A. Siddiqi
    Journal: RSC Advances
    Year: 2022

  • Title: Optimization of facile synthesized ZnO/CuO nanophotocatalyst for organic dye degradation by visible light irradiation using response surface methodology
    Authors: V.U. Siddiqui, A. Ansari, M.T. Ansari, M.K. Akram, W.A. Siddiqi, A.M. Alosaimi, et al.
    Journal: Catalysts
    Year: 2021

  • Title: Analyzing the electronic and conductive characteristics of zigzag graphene nanoribbons upon NOx and N₂O Adsorption: An ab-initio study
    Authors: M.M. Husain, M.T. Ansari, A. Almohammedi
    Journal: Materials Today Communications
    Year: 2024

  • Title: Occurrence of nonohmic trend in the ballistic transport mode of a modelled low dimensional device capable of performing electronic functions
    Authors: M.T. Ansari, A. Almohammedi, M. Rafat, M.M. Husain
    Journal: Superlattices and Microstructures
    Year: 2021

  • Title: Influence of varying carbon oxides concentrations on the selectivity of an electrical sensor utilizing graphene nanoribbons
    Authors: M.M. Husain, M.T. Ansari, A. Almohammedi
    Journal: Micro and Nanostructures
    Year: 2024

Praveer Sihota | Materials Science | Best Researcher Award

Dr. Praveer Sihota | Materials Science | Best Researcher Award

University Medical Center Hamburg, Germany, India

Author Profile

Early Academic Pursuits 🎓✨

Dr. Praveer Sihota’s journey into the fascinating realm of biomedical engineering began with a robust academic foundation. Completing his Bachelor of Engineering in Biomedical Engineering from Rajiv Gandhi Technical University, Bhopal (2006-2010), he achieved a commendable score of 73.5%. Building on this, he pursued a Master of Technology in Biomedical Engineering at MIT, Manipal University, Karnataka (2011-2013), earning an impressive CGPA of 8.14/10.

His academic progression culminated in a Ph.D. in Biomedical Engineering from the prestigious Indian Institute of Technology Ropar (2015-2021). His doctoral research not only expanded the boundaries of knowledge in bone characterization but also earned him the Best PhD Thesis of the Year 2021, a testament to his groundbreaking work. 📜🏆

Professional Endeavors 💼🔬

Dr. Sihota’s professional journey reflects his dedication to exploring biomedical engineering and bone health. Early in his career, he honed his skills as an M.Tech Trainee in Bioinstrumentation at CSIR-CSIO Chandigarh (2012-2013). He then advanced to roles such as Research Fellow in Biostatistics at IIT Mandi (2013-2014) and in Endocrinology at PGIMER Chandigarh (2015).

Notably, as a Project Assistant at IIT Ropar (2021), he delved into bone mechanical testing. Currently, Dr. Sihota holds the prestigious Alexander von Humboldt Fellowship as a Post-doctoral Research Fellow in the Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Germany (2022-2025). His work focuses on the multi-scale assessment of bone quality, furthering insights into metabolic bone diseases. 🌍🔍

Contributions and Research Focus 🧬🛠️

Dr. Sihota’s research delves into the multiscale characterization of bone, emphasizing metabolic disorders like type 2 diabetes, obesity, and osteoporosis. His studies on the effects of advanced glycation end products and glucocorticoids reveal their impact on bone material and mechanical properties, mineralization, collagen quality, and skeletal fragility.

By leveraging clinical cohorts and animal models, Dr. Sihota investigates the underlying mechanisms of pathological bone changes, offering critical insights into fracture risks. His work stands as a beacon for developing diagnostic tools and treatments to combat fragility fractures, enhancing the quality of life for individuals with metabolic bone diseases. 🩺🦵

Accolades and Recognition 🌟🏅

Dr. Sihota’s exemplary contributions have garnered accolades, with his Best PhD Thesis of the Year 2021 highlighting his innovative approach and dedication. Being selected as an Alexander von Humboldt Fellow is another significant milestone, reflecting his status as a leading researcher in his field.

Impact and Influence 🌍📈

Dr. Sihota’s work has left a profound impact on both academic and clinical realms. By integrating engineering principles with medical science, he addresses critical challenges in bone health. His research findings have implications for clinicians, researchers, and healthcare policymakers, shaping strategies to prevent and manage bone fragility.

Legacy and Future Contributions 🔮🚀

Dr. Sihota’s legacy is rooted in his commitment to advancing biomedical engineering. Looking ahead, he aims to expand the frontiers of bone health research, exploring new diagnostic tools and innovative treatments for metabolic bone diseases. His vision encompasses fostering interdisciplinary collaboration and mentoring the next generation of researchers.

With a career characterized by excellence, innovation, and compassion, Dr. Praveer Sihota continues to inspire and contribute significantly to the global scientific community. His journey exemplifies the power of perseverance and intellectual curiosity, paving the way for a healthier future. 🌟👨‍🔬

Citations

A total of 315 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         315
  • h-index           22
  • i10-index        10

Notable Publications 

  • Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice
    • Authors: Krug, J., Plumeyer, C., Davydok, A., Fiedler, I.A.K., Jähn-Rickert, K.
    • Journal: Biomaterials Advances
    • Year: 2025.
  • Osteomodulin deficiency in mice causes a specific reduction of transversal cortical bone size
    • Authors: Zhao, W., von Kroge, S., Jadzic, J., Schinke, T., Yorgan, T.A.
    • Journal: Journal of Bone and Mineral Research
    • Year: 2024.
  • Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk
    • Authors: Cirovic, A., Schmidt, F.N., Vujacic, M., Busse, B., Milovanovic, P.
    • Journal: JBMR Plus
    • Year: 2024.
  • Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra
    • Authors: Mehta, D., Sihota, P., Tikoo, K., Kumar, S., Kumar, N.
    • Journal: Bone Reports
    • Year: 2023.
  • The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin
    • Authors: Dwivedi, K.K., Lakhani, P., Sihota, P., Kumar, S., Kumar, N.
    • Journal: Acta Biomaterialia
    • Year: 2023.