BALARAM KUNDU | Mechanical Engineering | Academic Excellence in Innovation Award

Prof Dr. BALARAM KUNDU | Mechanical Engineering | Academic Excellence in Innovation Award

Jadavpur University, India

Author Profile

Early Academic Pursuits 📚

Dr. Balaram Kundu’s academic journey is a testament to his unwavering commitment to excellence in mechanical engineering. His foundational years were marked by exemplary achievements, beginning with his Bachelor of Engineering (Mechanical Engineering) from the prestigious Regional Engineering College Durgapur (now NIT Durgapur) in 1993, where he graduated with first-class honors, achieving a remarkable 70.5%.

Driven by his passion for thermal engineering, Dr. Kundu pursued his Master of Engineering (Thermal Engineering) at Bengal Engineering College (now IIEST Shibpur) in 1995, securing first-class distinction with an impressive 77.8%. This academic rigor set the stage for his doctoral studies, and in February 2000, he earned his Doctor of Philosophy (Ph.D.) in Engineering from the esteemed Indian Institute of Technology (IIT) Kharagpur, India. His doctoral research laid a robust foundation for his future contributions to thermal engineering and mechanical systems.


Professional Endeavors 🏢

Dr. Kundu’s career trajectory reflects his dedication to teaching, research, and academic leadership. Beginning in April 1998 as a Reader in Mechanical Engineering at Jadavpur University, he quickly established himself as a skilled educator and researcher. His teaching journey progressed as follows:

  • Lecturer (Senior Scale) at Jadavpur University (2003–2008), where he expanded his teaching portfolio and research collaborations.
  • Lecturer at Jalpaiguri Government Engineering College (2008–2011), where he honed his mentoring abilities and inspired young engineers.
  • Promoted to Associate Professor in 2011, he continued his impactful work at Jadavpur University until his promotion to Professor in 2014.

At Jadavpur University, Dr. Kundu has been instrumental in shaping the Department of Mechanical Engineering, fostering innovation in teaching and mentoring a generation of aspiring engineers.


Contributions and Research Focus 🔬

Dr. Kundu’s research interests center on thermal engineering, focusing on topics like heat transfer, thermodynamics, and energy efficiency. His work bridges the theoretical and practical aspects of mechanical engineering, offering solutions to complex thermal problems.

Key highlights of his research:

  • Pioneering Work on Thermal Systems: His investigations into advanced thermal systems have contributed to sustainable energy practices.
  • Publications and Collaborations: Dr. Kundu has authored numerous papers in reputed journals, collaborating with researchers worldwide to advance knowledge in mechanical engineering.
  • Education and Innovation: His expertise in heat transfer and thermodynamics has influenced curriculum development, making education more relevant to industrial applications.

Accolades and Recognition 🏆

Dr. Kundu’s excellence has earned him several accolades throughout his career:

  • Recognition as a leading academic in mechanical engineering.
  • Invitations to conferences as a speaker and panelist, showcasing his thought leadership.
  • Esteemed reviewer for top-tier journals, contributing to academic rigor in his field.

Impact and Influence 🌍

Dr. Kundu’s influence extends beyond the classroom. His contributions have shaped the academic and professional lives of students, many of whom hold prominent positions in academia and industry. By integrating research insights into teaching, he has ensured that his students are equipped with the latest knowledge and skills.

Additionally, his commitment to mentoring young researchers has fostered a culture of innovation at Jadavpur University. His research findings have informed policy-making and industrial practices, addressing critical challenges in energy efficiency and mechanical systems.


Legacy and Future Contributions 🌟

Dr. Kundu’s legacy lies in his dedication to advancing mechanical engineering through research, teaching, and mentorship. Looking forward, he aims to:

  • Expand his research into sustainable energy systems and emerging technologies in thermal engineering.
  • Develop interdisciplinary collaborations to address global challenges in energy and environmental sustainability.
  • Continue mentoring the next generation of engineers and researchers, leaving an indelible mark on academia and industry.

With a career spanning decades, Dr. Kundu’s commitment to knowledge and innovation makes him a luminary in his field. His journey inspires students and professionals alike, exemplifying the values of hard work, curiosity, and lifelong learning. 🌟

Citations

A total of 2,867 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations        2,867
  • h-index          140
  • i10-index       34

Notable Publications 

  • Title: A review of applications of green nanofluids for performance improvement of solar collectors
    Authors: Dewanjee, D., Kundu, B.
    Journal: Renewable Energy
    Year: 2025.
  • Title: Two-Dimensional Analysis of Absorber Plates in Solar Collectors with a Nonlinear Plate Temperature at the Tube Section
    Authors: Mahakud, J., Kundu, B.
    Journal: Energies
    Year: 2024.
  • Title: Experimental and meta-heuristic optimization for the highest thermo-hydraulic performance of a solar air heater with a V-notch pattern of hemispherical protrusions on absorber surfaces
    Authors: Mahto, P.K., Kundu, B.
    Journal: International Communications in Heat and Mass Transfer
    Year: 2024.
  • Title: Parametric optimization of solar air heaters with dimples on absorber plates using metaheuristic approaches
    Authors: Mahto, P.K., Das, P.P., Diyaley, S., Kundu, B.
    Journal: Applied Thermal Engineering
    Year: 2024.
  • Title: A Review of Artificial Intelligence Methods in Predicting Thermophysical Properties of Nanofluids for Heat Transfer Applications
    Authors: Basu, A., Saha, A., Banerjee, S., Roy, P.C., Kundu, B.
    Journal: Energies
    Year: 2024.

Chinmoy Das | Energy materials | Best Researcher Award

Assist Prof Dr. Chinmoy Das | Energy materials | Best Researcher Award

SRM University-AP, Andhra Pradesh, India

Author Profile

Early Academic Pursuits

Dr. Chinmoy Das embarked on his academic journey at the prestigious Indian Institute of Technology Bombay (IIT Bombay), where he pursued a Ph.D. in Inorganic Chemistry. Under the mentorship of Prof. Maheswaran Shanmugam, he developed a solid foundation in the principles of chemistry, particularly focusing on the synthesis of functional materials. His time at IIT Bombay (2012-2017) was marked by rigorous research and experimentation, leading to significant advancements in understanding the interactions and properties of inorganic compounds. This period laid the groundwork for his future endeavors in both academic and research settings, fostering a passion for experimental chemistry that continues to drive his work today. 🎓

Professional Endeavors

Following the completion of his doctoral studies, Dr. Das took on various roles that enriched his professional portfolio. He began as a Research Associate at IIT Bombay, where he contributed to several projects, expanding his expertise in material synthesis and characterization. His journey continued internationally, with impactful positions as a Postdoctoral Researcher at Technische Universität Dortmund in Germany, and later at the AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory in Japan. During these formative years (2018-2023), Dr. Das honed his skills in developing novel materials aimed at solving critical energy and environmental challenges. In September 2023, he accepted a role as an Assistant Professor in the Department of Chemistry at SRM University-AP in Amaravati, India, marking a return to academia with a renewed focus on research and teaching. 🌍

Contributions and Research Focus

Dr. Das’s research is characterized by a commitment to sustainability and innovation. His motivation to synthesize new functional materials aims at addressing global challenges, particularly in energy production and water purification. One of his key areas of focus is the synthesis of methanol and ethanol from atmospheric CO2, a groundbreaking endeavor that aligns with eco-friendly practices and the principles of green chemistry. By leveraging innovative chemical processes, Dr. Das strives to contribute to the development of sustainable fuel alternatives that can significantly reduce greenhouse gas emissions.In addition to fuel production, Dr. Das is passionate about harnessing solar energy to produce clean drinkable water from atmospheric moisture. This research not only addresses the pressing issue of water scarcity but also promotes the utilization of renewable energy sources in a sustainable manner. Furthermore, he is exploring the development of biodegradable solid-state electrolytes aimed at creating low-cost Li/Na-ion batteries, which are crucial for the advancement of energy storage technologies. 🔋

Accolades and Recognition

Dr. Das’s contributions to the field of chemistry have not gone unnoticed. His research has been published in several esteemed journals, garnering citations and recognition within the scientific community. He has received awards and grants that acknowledge his innovative work, reflecting his commitment to advancing both academic knowledge and practical applications. His collaborative work during his postdoctoral tenure has also positioned him as a respected figure in international research circles, further enhancing his academic reputation. 🏆

Impact and Influence

Through his teaching and mentorship at SRM University-AP, Dr. Das is shaping the next generation of chemists. He inspires students to pursue their passions while instilling the importance of sustainability in scientific research. His professional journey serves as a beacon for aspiring scientists, illustrating the potential impact of dedicated research on real-world issues. By focusing on sustainable practices, he aims to influence not just academic peers but also industry stakeholders, advocating for greener alternatives in energy and materials science. 🌱

Legacy and Future Contributions

As Dr. Chinmoy Das continues to explore innovative avenues in his research, his legacy will likely reflect a profound commitment to environmental sustainability and technological advancement. He envisions a future where his contributions can lead to significant breakthroughs in clean energy and water purification technologies. By focusing on eco-friendly solutions, Dr. Das aspires to leave a lasting impact on both academia and industry, fostering a culture of innovation that prioritizes ecological balance.In the coming years, Dr. Das aims to expand his research collaborations internationally, seeking to engage with other scientists and institutions that share his vision. His goal is not only to advance his own research agenda but also to contribute to broader discussions on sustainability within the global scientific community. Through these efforts, he hopes to solidify his role as a leader in the field of chemistry, guiding future generations toward a more sustainable and environmentally conscious approach to science. 🌏In conclusion, Dr. Chinmoy Das exemplifies the integration of academic rigor with a commitment to sustainable innovation. His journey from IIT Bombay to his current position as an Assistant Professor highlights his dedication to addressing some of the most pressing challenges of our time through chemistry.

Citations

A total of 968 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         968
  • h-index           33
  • i10-index        16

Notable Publications 

  • Title: Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites
    Authors: Ye, C., Lampronti, G.I., McHugh, L.N., Dutton, S.E., Bennett, T.D.
    Journal: Chemical Science, 2024.
  • Title: Insights Into the Mechanochemical Glass Formation of Zeolitic Imidazolate Frameworks
    Authors: Xue, W.-L., Das, C., Weiß, J.-B., Henke, S.
    Journal: Angewandte Chemie – International Edition, 2024.
  • Title: Breathing porous liquids based on responsive metal-organic framework particles
    Authors: Koutsianos, A., Pallach, R., Frentzel-Beyme, L., Sternemann, C., Henke, S.
    Journal: Nature Communications, 2023.
  • Title: Creating glassy states of dicarboxylate-bridged coordination polymers
    Authors: Fan, Z., Wei, Y.-S., Das, C., Ohara, K., Horike, S.
    Journal: Chemical Communications, 2023.
  • Title: A robust low coordinate Co(II) catalyst for efficient conversion of CO2 into methanol under mild conditions
    Authors: Sharma, V., Rasamsetty, A., Das, C., Borah, D., Shanmugam, M.
    Journal: Chemical Engineering Journal, 2023.

Tamizhdurai | Fuel | Best Researcher Award

Assist Prof Dr. Tamizhdurai - Fuel - Best Researcher Award 🏆

D.G.Vaishnav College - India

Professional Profiles

Early Academic Pursuits

He embarked on his academic journey with a Bachelor's degree in Chemistry from the University of Madras, where he demonstrated a keen interest in the field of science. He further pursued a Master's degree in General Chemistry at R.K. Mission Vivekananda College, where he delved into research projects focusing on supra-molecular chemistry and the synthesis of trivalent ferrate ions. These early academic endeavors laid the groundwork for his future research pursuits in catalysis and fuel science.

Professional Endeavors

His professional journey in the realm of fuel science commenced with his doctoral research at the National Centre for Catalysis Research (NCCR), Indian Institute of Technology Madras (IITM), in coordination with Anna University. Here, he worked under the guidance of esteemed professors like Chair Prof. S. Sivasanker and Dr. K. Shanthi, specializing in catalysis. His research primarily focused on developing supported catalysts for the isomerization of light naphtha to improve octane levels, a critical aspect in the petroleum industry. His expertise in chemistry and material science, coupled with his hands-on experience in catalyst development, contributed significantly to his research endeavors.

Contributions and Research Focus in Fuel

His research has made notable contributions to the field of fuel science, particularly in catalysis and isomerization processes. His work on developing supported catalysts, such as superacidic supports and Pt-based metal oxide systems, for octane improvement demonstrates his commitment to enhancing fuel efficiency and performance. Through meticulous characterization techniques and systematic studies, he has elucidated the structure-activity relationships of these catalysts, paving the way for advancements in fuel technology. His research not only addresses the challenges posed by fossil fuels but also aligns with efforts to promote renewable energy sources and sustainable fuel alternatives.

Accolades and Recognition

His dedication to fuel research has earned him recognition and accolades in the scientific community. His contributions have been acknowledged through various awards and honors, including the Best Researcher Award in the field of catalysis. His innovative research approaches and technical leadership skills have garnered appreciation from peers and mentors alike.

Impact and Influence

His research has the potential to have a significant impact on the fuel industry and energy sector as a whole. By developing efficient catalysts for octane improvement, he contributes to enhancing the performance and sustainability of fossil fuels. Moreover, his work aligns with broader efforts to transition towards renewable energy sources and reduce the environmental impact of combustion processes. Through his research endeavors, Tamizhdurai aims to influence industry practices and contribute to a more sustainable energy future.

Legacy and Future Contributions

As he continues his research journey, his legacy in fuel science is poised to endure. His dedication to safety, hypothesis-driven experiments, and technical excellence sets a high standard for future researchers in the field. Moving forward, he envisions leveraging his expertise to address pressing challenges in fuel technology, such as emissions reduction and alternative fuel development. Through collaborative efforts and interdisciplinary approaches, he aims to make enduring contributions to the advancement of fuel science and energy sustainability.

Notable Publications