Priti Prasanna Maity | Tissue Engineering | Best Researcher Award

Dr. Priti Prasanna Maity | Tissue Engineering | Best Researcher Award

University of California, Riverside, India

Author Profile

🌱 Early Academic Pursuits

Dr. Maity’s academic journey began with an M.Sc. in Medical Laboratory Technology at Vidyasagar University (2004–2006), where her thesis on lipid profiling in chronic smokers laid the foundation for her interest in the health sciences. She then pursued a Master’s in Medical Science & Technology at the prestigious Indian Institute of Technology, Kharagpur (IIT-Kgp), where she conducted groundbreaking research on the molecular and structural profiling of phyllodes tumors and fibroadenomas. Her research offered new insights into diagnostic markers, enhancing the understanding of these conditions and paving the way for more effective diagnostics in clinical settings. This early foundation established Dr. Maity’s commitment to bridging scientific inquiry with practical medical applications.

🧪 Professional Endeavors

Dr. Maity’s professional trajectory showcases an impressive range of positions at reputable institutions. Her PhD at the Indian Institute of Engineering Science and Technology (IIEST, Shibpur) focused on cartilage tissue engineering, a project that not only highlighted her expertise in biomaterials but also her innovative approach to utilizing bio-waste for medical applications. Specifically, she explored the potential of capra ear cartilage in creating micro-tissue particles and injectable hydrogels to promote cartilage regeneration. This work, which included testing on animal models, underscored her potential as a leader in regenerative medicine and garnered significant attention within the research community.After completing her PhD, Dr. Maity embarked on a series of postdoctoral research associate roles in the United States. At the University of California, San Diego, her work on the gut microbiome led to notable breakthroughs in probiotic research. By developing patient-derived colon organoids, she assessed the impact of probiotics on gut barrier integrity, demonstrating their potential in enhancing gut health and treating Crohn’s Disease subtypes. Her work has shown that probiotics and postbiotics could significantly improve the integrity of gut models, specifically aiding non-stricturing, non-penetrating Crohn’s Disease, offering new hope for treatment-resistant patients.Following her work in San Diego, Dr. Maity joined the Medical University of South Carolina as a postdoctoral research associate, where she advanced her expertise in cancer research by generating colon organoids. Her work involved drug resistance assays on CRC cell lines and cutting-edge techniques such as immunofluorescence, qPCR, confocal microscopy, and flow cytometry, equipping her with a comprehensive skill set in molecular biology. Currently, Dr. Maity holds a postdoctoral position at the University of California, Riverside, where she is working on developing co-culture methods in a Gut-on-a-chip system, a project that merges tissue engineering and microbiology in novel ways.

🔬 Contributions and Research Focus

Dr. Maity’s research contributions have consistently targeted high-impact areas in biomedical sciences. Her work on cartilage tissue engineering and bio-waste-derived biomaterials promises a sustainable alternative to synthetic materials in regenerative medicine. Her development of patient-derived organoids has provided valuable models for studying gut health and the therapeutic potential of probiotics. Additionally, her research in cancer biology—particularly her work on drug-resistant colon cancer cell lines—highlights her dedication to addressing critical challenges in oncology.Her collaboration on gut health models, where she investigated the influence of probiotics and postbiotics on intestinal barrier function, has significant implications for gastrointestinal diseases. This pioneering work holds promise for developing treatments that target specific disease subtypes, offering individualized approaches to managing conditions such as Crohn’s disease.

🏆 Accolades and Recognition

Dr. Maity’s groundbreaking research and contributions to the fields of tissue engineering and microbiome science have been widely recognized. Throughout her career, her projects have attracted the attention of academic peers, and her findings have been presented in several prestigious journals and conferences. Moreover, her training in data science at MIT’s Schwarzman College of Computing has further bolstered her analytical capabilities, enabling her to integrate computational techniques into her research, an increasingly valuable skill in biomedical sciences.

🌍 Impact and Influence

Dr. Maity’s work has had a profound impact on both academic research and clinical applications. Her interdisciplinary approach has bridged the gap between laboratory research and potential therapeutic applications, especially in the fields of regenerative medicine, oncology, and gut health. Her tissue engineering research, for instance, has opened up new possibilities for sustainable bio-waste applications, while her insights into organoid modeling have influenced current practices in studying disease mechanisms and treatment responses.Her contributions are also a testament to the growing relevance of organ-on-a-chip systems, which are helping researchers study complex interactions in controlled environments. Her work on Gut-on-a-chip could revolutionize the study of intestinal health, offering models that accurately mimic human physiology and provide new insights into gastrointestinal conditions.

🌟 Legacy and Future Contributions

Dr. Maity’s work stands as a testament to her unwavering dedication to advancing biomedical research. Her innovative projects have not only furthered understanding in her field but have also inspired a new generation of scientists to pursue research that addresses global health challenges. As she continues to expand her research at the University of California, Riverside, she is likely to drive new developments in tissue engineering and microbiome science, with a focus on translating her findings into therapeutic applications.Looking forward, Dr. Maity is well-positioned to make impactful contributions in biomedical innovation. With her deep expertise in organoid technology, her ability to integrate data science into biological research, and her commitment to interdisciplinary collaboration, her future work promises to break new ground. She remains an influential figure in her field, with her research likely to inspire advancements in disease modeling, personalized medicine, and sustainable biomaterials in the years to come.

Citations

A total of 1395 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         1395
  • h-index           36
  • i10-index        21

Notable Publications 

  • A living organoid biobank of patients with Crohn’s disease reveals molecular subtypes for personalized therapeutics
    Authors: Tindle, C., Fonseca, A.G., Taheri, S., Das, S., Ghosh, P.
    Journal: Cell Reports Medicine
    Year: 2024.
  • Peptide-Based Biomaterials for Bone and Cartilage Regeneration
    Authors: Kapat, K., Kumbhakarn, S., Sable, R., Takle, S., Maity, P.
    Journal: Biomedicines
    Year: 2024.
  • Recent Advances and Challenges in the Early Diagnosis and Treatment of Preterm Labor
    Authors: Gondane, P., Kumbhakarn, S., Maity, P., Kapat, K.
    Journal: Bioengineering
    Year: 2024.
  • Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon
    Authors: MĂşnera, J.O., Kechele, D.O., Bouffi, C., Helmrath, M.A., Wells, J.M.
    Journal: Cell Stem Cell
    Year: 2023.
  • Editorial: Fluorescent nanomaterials for biomedical applications
    Authors: Ganguly, S., Das, P., Parameswaranpillai, J., Maity, P.P.
    Journal: Frontiers in Materials
    Year: 2023.

Mudasir Bashir Gugjoo | Regenerative Medicine | Best Researcher Award

Dr. Mudasir Bashir Gugjoo - Regenerative Medicine - Best Researcher Award 🏆 

Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K) - India

Professional Profiles

Early Academic Pursuits

He, currently serving as a Senior Assistant Professor at the Veterinary Clinical Complex in Srinagar, India, embarked on his academic journey with a fervent passion for veterinary medicine. He pursued his Bachelor of Veterinary Science and Animal Husbandry (BVSc & AH) from Shuhama, SKUAST-Kashmir, Jammu & Kashmir, India, laying a strong foundation for his future endeavors in the field of healthcare innovation.

Professional Endeavors

Over the years, he has ascended the ranks in academia and veterinary practice, contributing significantly to the realms of regenerative medicine, tissue engineering, and biomedical research. With a distinguished career spanning several roles, including Veterinary Assistant Surgeon, Senior Veterinary Officer, and now as a seasoned Assistant Professor, he has garnered invaluable experience and expertise in the application of advanced medical technologies and innovative treatment modalities.

Contributions and Research Focus in Regenerative Medicine

His research focuses primarily on the intersection of biomaterials and stem cells within the realm of regenerative medicine. His pioneering work includes the development and application of stem cell-loaded bioactive ceramics for bone tissue engineering, hydrogel technology for skin wound healing, and acellular corneal grafts for corneal ulcers. Through his establishment of a Stem Cell Laboratory at the Division of Veterinary Clinical Complex, FVSc & AH, Shuhama, under the SERB-DST project, he has spearheaded groundbreaking research initiatives aimed at advancing the field of regenerative medicine.

Accolades and Recognition

His exemplary contributions to the field of regenerative medicine have not gone unnoticed. He has received accolades such as the Best Researcher Award, acknowledging his outstanding achievements and dedication to advancing healthcare innovation. His research endeavors have been commended for their significant impact on veterinary medicine and the broader biomedical community.

Impact and Influence

His research has far-reaching implications, not only within the veterinary domain but also in human healthcare. By pioneering novel techniques and therapeutic approaches, such as evaluating nano-cement/stem cells for bone tissue engineering and natural bone decellularized matrix/stem cells for bone tissue regeneration, he has contributed to the development of transformative treatments with the potential to improve patient outcomes and quality of life.

Legacy and Future Contributions

As he continues to push the boundaries of scientific discovery in regenerative medicine, his legacy as a trailblazer in the field is firmly established. His commitment to excellence, coupled with his passion for advancing healthcare through innovative research and technological interventions, ensures that his contributions will continue to shape the future of regenerative medicine for years to come. With a steadfast dedication to making meaningful strides in healthcare innovation, he remains poised to leave an enduring legacy of impact and inspiration in the field of regenerative medicine and beyond.

Citations

  • Citations               1424
  • h-index                  22
  • i10-index               33

Notable Publications