Praveer Sihota | Materials Science | Best Researcher Award

Dr. Praveer Sihota | Materials Science | Best Researcher Award

University Medical Center Hamburg, Germany, India

Author Profile

Early Academic Pursuits 🎓✨

Dr. Praveer Sihota’s journey into the fascinating realm of biomedical engineering began with a robust academic foundation. Completing his Bachelor of Engineering in Biomedical Engineering from Rajiv Gandhi Technical University, Bhopal (2006-2010), he achieved a commendable score of 73.5%. Building on this, he pursued a Master of Technology in Biomedical Engineering at MIT, Manipal University, Karnataka (2011-2013), earning an impressive CGPA of 8.14/10.

His academic progression culminated in a Ph.D. in Biomedical Engineering from the prestigious Indian Institute of Technology Ropar (2015-2021). His doctoral research not only expanded the boundaries of knowledge in bone characterization but also earned him the Best PhD Thesis of the Year 2021, a testament to his groundbreaking work. 📜🏆

Professional Endeavors 💼🔬

Dr. Sihota’s professional journey reflects his dedication to exploring biomedical engineering and bone health. Early in his career, he honed his skills as an M.Tech Trainee in Bioinstrumentation at CSIR-CSIO Chandigarh (2012-2013). He then advanced to roles such as Research Fellow in Biostatistics at IIT Mandi (2013-2014) and in Endocrinology at PGIMER Chandigarh (2015).

Notably, as a Project Assistant at IIT Ropar (2021), he delved into bone mechanical testing. Currently, Dr. Sihota holds the prestigious Alexander von Humboldt Fellowship as a Post-doctoral Research Fellow in the Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Germany (2022-2025). His work focuses on the multi-scale assessment of bone quality, furthering insights into metabolic bone diseases. 🌍🔍

Contributions and Research Focus 🧬🛠️

Dr. Sihota’s research delves into the multiscale characterization of bone, emphasizing metabolic disorders like type 2 diabetes, obesity, and osteoporosis. His studies on the effects of advanced glycation end products and glucocorticoids reveal their impact on bone material and mechanical properties, mineralization, collagen quality, and skeletal fragility.

By leveraging clinical cohorts and animal models, Dr. Sihota investigates the underlying mechanisms of pathological bone changes, offering critical insights into fracture risks. His work stands as a beacon for developing diagnostic tools and treatments to combat fragility fractures, enhancing the quality of life for individuals with metabolic bone diseases. 🩺🦵

Accolades and Recognition 🌟🏅

Dr. Sihota’s exemplary contributions have garnered accolades, with his Best PhD Thesis of the Year 2021 highlighting his innovative approach and dedication. Being selected as an Alexander von Humboldt Fellow is another significant milestone, reflecting his status as a leading researcher in his field.

Impact and Influence 🌍📈

Dr. Sihota’s work has left a profound impact on both academic and clinical realms. By integrating engineering principles with medical science, he addresses critical challenges in bone health. His research findings have implications for clinicians, researchers, and healthcare policymakers, shaping strategies to prevent and manage bone fragility.

Legacy and Future Contributions 🔮🚀

Dr. Sihota’s legacy is rooted in his commitment to advancing biomedical engineering. Looking ahead, he aims to expand the frontiers of bone health research, exploring new diagnostic tools and innovative treatments for metabolic bone diseases. His vision encompasses fostering interdisciplinary collaboration and mentoring the next generation of researchers.

With a career characterized by excellence, innovation, and compassion, Dr. Praveer Sihota continues to inspire and contribute significantly to the global scientific community. His journey exemplifies the power of perseverance and intellectual curiosity, paving the way for a healthier future. 🌟👨‍🔬

Citations

A total of 315 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         315
  • h-index           22
  • i10-index        10

Notable Publications 

  • Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice
    • Authors: Krug, J., Plumeyer, C., Davydok, A., Fiedler, I.A.K., Jähn-Rickert, K.
    • Journal: Biomaterials Advances
    • Year: 2025.
  • Osteomodulin deficiency in mice causes a specific reduction of transversal cortical bone size
    • Authors: Zhao, W., von Kroge, S., Jadzic, J., Schinke, T., Yorgan, T.A.
    • Journal: Journal of Bone and Mineral Research
    • Year: 2024.
  • Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk
    • Authors: Cirovic, A., Schmidt, F.N., Vujacic, M., Busse, B., Milovanovic, P.
    • Journal: JBMR Plus
    • Year: 2024.
  • Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra
    • Authors: Mehta, D., Sihota, P., Tikoo, K., Kumar, S., Kumar, N.
    • Journal: Bone Reports
    • Year: 2023.
  • The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin
    • Authors: Dwivedi, K.K., Lakhani, P., Sihota, P., Kumar, S., Kumar, N.
    • Journal: Acta Biomaterialia
    • Year: 2023.

Chinmoy Das | Energy materials | Best Researcher Award

Assist Prof Dr. Chinmoy Das | Energy materials | Best Researcher Award

SRM University-AP, Andhra Pradesh, India

Author Profile

Early Academic Pursuits

Dr. Chinmoy Das embarked on his academic journey at the prestigious Indian Institute of Technology Bombay (IIT Bombay), where he pursued a Ph.D. in Inorganic Chemistry. Under the mentorship of Prof. Maheswaran Shanmugam, he developed a solid foundation in the principles of chemistry, particularly focusing on the synthesis of functional materials. His time at IIT Bombay (2012-2017) was marked by rigorous research and experimentation, leading to significant advancements in understanding the interactions and properties of inorganic compounds. This period laid the groundwork for his future endeavors in both academic and research settings, fostering a passion for experimental chemistry that continues to drive his work today. 🎓

Professional Endeavors

Following the completion of his doctoral studies, Dr. Das took on various roles that enriched his professional portfolio. He began as a Research Associate at IIT Bombay, where he contributed to several projects, expanding his expertise in material synthesis and characterization. His journey continued internationally, with impactful positions as a Postdoctoral Researcher at Technische Universität Dortmund in Germany, and later at the AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory in Japan. During these formative years (2018-2023), Dr. Das honed his skills in developing novel materials aimed at solving critical energy and environmental challenges. In September 2023, he accepted a role as an Assistant Professor in the Department of Chemistry at SRM University-AP in Amaravati, India, marking a return to academia with a renewed focus on research and teaching. 🌍

Contributions and Research Focus

Dr. Das’s research is characterized by a commitment to sustainability and innovation. His motivation to synthesize new functional materials aims at addressing global challenges, particularly in energy production and water purification. One of his key areas of focus is the synthesis of methanol and ethanol from atmospheric CO2, a groundbreaking endeavor that aligns with eco-friendly practices and the principles of green chemistry. By leveraging innovative chemical processes, Dr. Das strives to contribute to the development of sustainable fuel alternatives that can significantly reduce greenhouse gas emissions.In addition to fuel production, Dr. Das is passionate about harnessing solar energy to produce clean drinkable water from atmospheric moisture. This research not only addresses the pressing issue of water scarcity but also promotes the utilization of renewable energy sources in a sustainable manner. Furthermore, he is exploring the development of biodegradable solid-state electrolytes aimed at creating low-cost Li/Na-ion batteries, which are crucial for the advancement of energy storage technologies. 🔋

Accolades and Recognition

Dr. Das’s contributions to the field of chemistry have not gone unnoticed. His research has been published in several esteemed journals, garnering citations and recognition within the scientific community. He has received awards and grants that acknowledge his innovative work, reflecting his commitment to advancing both academic knowledge and practical applications. His collaborative work during his postdoctoral tenure has also positioned him as a respected figure in international research circles, further enhancing his academic reputation. 🏆

Impact and Influence

Through his teaching and mentorship at SRM University-AP, Dr. Das is shaping the next generation of chemists. He inspires students to pursue their passions while instilling the importance of sustainability in scientific research. His professional journey serves as a beacon for aspiring scientists, illustrating the potential impact of dedicated research on real-world issues. By focusing on sustainable practices, he aims to influence not just academic peers but also industry stakeholders, advocating for greener alternatives in energy and materials science. 🌱

Legacy and Future Contributions

As Dr. Chinmoy Das continues to explore innovative avenues in his research, his legacy will likely reflect a profound commitment to environmental sustainability and technological advancement. He envisions a future where his contributions can lead to significant breakthroughs in clean energy and water purification technologies. By focusing on eco-friendly solutions, Dr. Das aspires to leave a lasting impact on both academia and industry, fostering a culture of innovation that prioritizes ecological balance.In the coming years, Dr. Das aims to expand his research collaborations internationally, seeking to engage with other scientists and institutions that share his vision. His goal is not only to advance his own research agenda but also to contribute to broader discussions on sustainability within the global scientific community. Through these efforts, he hopes to solidify his role as a leader in the field of chemistry, guiding future generations toward a more sustainable and environmentally conscious approach to science. 🌏In conclusion, Dr. Chinmoy Das exemplifies the integration of academic rigor with a commitment to sustainable innovation. His journey from IIT Bombay to his current position as an Assistant Professor highlights his dedication to addressing some of the most pressing challenges of our time through chemistry.

Citations

A total of 968 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations         968
  • h-index           33
  • i10-index        16

Notable Publications 

  • Title: Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites
    Authors: Ye, C., Lampronti, G.I., McHugh, L.N., Dutton, S.E., Bennett, T.D.
    Journal: Chemical Science, 2024.
  • Title: Insights Into the Mechanochemical Glass Formation of Zeolitic Imidazolate Frameworks
    Authors: Xue, W.-L., Das, C., Weiß, J.-B., Henke, S.
    Journal: Angewandte Chemie – International Edition, 2024.
  • Title: Breathing porous liquids based on responsive metal-organic framework particles
    Authors: Koutsianos, A., Pallach, R., Frentzel-Beyme, L., Sternemann, C., Henke, S.
    Journal: Nature Communications, 2023.
  • Title: Creating glassy states of dicarboxylate-bridged coordination polymers
    Authors: Fan, Z., Wei, Y.-S., Das, C., Ohara, K., Horike, S.
    Journal: Chemical Communications, 2023.
  • Title: A robust low coordinate Co(II) catalyst for efficient conversion of CO2 into methanol under mild conditions
    Authors: Sharma, V., Rasamsetty, A., Das, C., Borah, D., Shanmugam, M.
    Journal: Chemical Engineering Journal, 2023.