Runu Banerjee Roy | Artificial Intelligence | Best Researcher Award

Dr. Runu Banerjee Roy | Artificial Intelligence | Best Researcher Award

Jadavpur University| India

Dr. Runu Banerjee Roy is a Professor in Instrumentation and Electronics Engineering at Jadavpur University, widely recognized for her contributions to electronic olfaction, taste sensing, molecular imprinting, sensor development, and artificial intelligence–based instrumentation. She has an extensive research profile with 1213 citations, an h-index of 17, and an i10-index of 25, reflecting her strong scholarly impact and research productivity. Her publication record includes more than 50 peer-reviewed journal papers, around 40 conference papers, multiple book chapters, and several patents that are granted, published, or filed. She has successfully guided doctoral and postgraduate research scholars and completed multiple sponsored research projects funded by major scientific agencies, focusing on portable sensing devices, electronic nose and tongue systems, and electrochemical detection technologies for applications in food quality and safety. In academics, she has served in leadership roles such as Head of Department, NBA accreditation coordinator, and curriculum committee member, contributing to program development and quality enhancement. Her work has earned recognition through competitive research awards, scientific prizes, and support for international research presentations. With strong expertise spanning instrumentation, intelligent sensing systems, and applied electronics, she continues to advance innovative research, academic excellence, and technology-driven solutions in modern sensor engineering.

Profile: Google Scholar | Scopus

Featured Publications

Roy, R. B., Tudu, B., Shaw, L., Jana, A., Bhattacharyya, N., & Bandyopadhyay, R. (2012). Instrumental testing of tea by combining the responses of electronic nose and tongue. Journal of Food Engineering, 110(3), 356–363.

Banerjee, M. B., Roy, R. B., Tudu, B., Bandyopadhyay, R., & Bhattacharyya, N. (2019). Black tea classification employing feature fusion of E-Nose and E-Tongue responses. Journal of Food Engineering, 244, 55–63.

Banerjee, R., Tudu, B., Bandyopadhyay, R., & Bhattacharyya, N. (2016). A review on combined odor and taste sensor systems. Journal of Food Engineering, 190, 10–21.

Roy, R. B., Chattopadhyay, P., Tudu, B., Bhattacharyya, N., & Bandyopadhyay, R. (2014). Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach. Journal of Food Engineering, 142, 87–93.

Nag, S., Pradhan, S., Naskar, H., Roy, R. B., Tudu, B., Pramanik, P., … et al. (2021). A simple nano cerium oxide modified graphite electrode for electrochemical detection of formaldehyde in mushroom. IEEE Sensors Journal, 21(10), 12019–12026.

Major Singh Goraya | Computer Science | Best Researcher Award

Prof. Major Singh Goraya | Computer Science | Best Researcher Award

Sant Longowal Institute of Engineering and Technology | India

Dr. Major Singh Goraya is a Professor in the Department of Computer Science and Engineering at Sant Longowal Institute of Engineering and Technology (SLIET), Longowal. He holds a Ph.D. from Punjabi University, complemented by strong academic foundations in computer engineering. His primary research areas include cloud computing, resource management, green computing, fault tolerance, and load balancing. With 27 Scopus-indexed publications, 460 citations across 399 documents, and an h-index of 10, Dr. Goraya has made consistent scholarly contributions to high-performance and sustainable computing. His studies have explored dynamic resource allocation, energy-efficient scheduling frameworks, and deep learning-based optimization techniques. He has supervised several Ph.D. and M.Tech. research scholars and continues to guide emerging researchers in cloud resource efficiency and intelligent computation. His international exposure through conferences in the UK, Canada, and Malaysia reflects his active engagement in global research forums. In addition, he has successfully organized numerous academic workshops, conferences, and training programs. Dr. Goraya’s innovative contributions strengthen the integration of artificial intelligence and cloud technology, promoting scalable and eco-efficient computational solutions that advance modern computer engineering research.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Goyal, N., Singh, T., & Goraya, M. S. (2025). Deep convolutional neural networks vs. vision transformers for video-based human activity recognition. In Proceedings of Lecture Notes in Computer Science (pp. xx–xx). Springer.

Singh, J., & Goraya, M. S. (2023). An autonomous multi-agent framework using quality of service to prevent service level agreement violations in cloud environment. International Journal of Advanced Computer Science and Applications, 14(3).

Goyal, N., Goraya, M. S., & Singh, T. (2023). An axiomatic analysis for object detection and recognition using deep learning. In Smart Innovation, Systems and Technologies (pp. xx–xx). Springer.

Thakur, A., & Goraya, M. S. (2022). A workload and machine categorization-based resource allocation framework for load balancing and balanced resource utilization in the cloud. International Journal of Grid and High Performance Computing, 14(2).

Hasan, M., Goraya, M. S., & Garg, T. (2022). E-FFTF: An extended framework for flexible fault tolerance in cloud. In Lecture Notes in Networks and Systems (pp. xx–xx). Springer.