Muhamed Safeer Pandikkadavath | Engineering | Research Excellence Award

Dr. Muhamed Safeer Pandikkadavath | Engineering | Research Excellence Award

NIT Calicut | India

Muhamed Safeer Pandikkadavath is an Assistant Professor in Civil Engineering at a premier national institute, with advanced training in structural engineering from leading institutions. He has academic and research experience spanning teaching, funded research, and professional practice. His research focuses on seismic performance of steel and reinforced concrete structures, buckling-restrained braces, bridge vulnerability, and machine learning applications in earthquake engineering. He has received national-level competitive recognitions, research grants, and best paper awards, contributing significantly to resilient infrastructure development.

Citation Metrics (Scopus)

300
200
100
30
20
10
0

Citations
297

Documents
29

h-index
9

Citations

Documents

h-index

Featured Publications


Near-fault seismic vulnerability assessment of corrosion inflicted steel moment resisting frames


Journal of Constructional Steel Research · Article · Cited by 7

Citation counts may vary by indexing database; access depends on publisher policy.

Sivakamasundari | Computer Science | Best Researcher Award

Ms. Sivakamasundari | Computer Science | Best Researcher Award

SRM Institute of Science and Technology | India

Ms. P. Sivakamasundari is a dedicated academic and researcher in Computer Science and Engineering, recognized for her contributions to deep learning-based medical image analysis. With qualifications spanning Diploma, Bachelor’s, and Master’s degrees in Computer Science and Engineering, she is currently pursuing her Ph.D. at SRM Institute of Science and Technology. She has extensive teaching experience as an Assistant Professor for more than a decade, during which she has guided students in core computing subjects including algorithms, computation theory, compiler design, and image classification. Her research focuses on advanced deep learning frameworks for healthcare applications, particularly diabetic retinopathy and diabetic foot ulcer detection, resulting in book chapters, conference publications, and journal manuscripts under review. She has published and filed patents related to medical imaging and automated disease detection systems, demonstrating her innovation-driven approach. Her scholarly presence includes 1 citation, 1 h-index, and 0 i10-index, indicating emerging research visibility. She has completed multiple professional certifications and participated in workshops, FDPs, and internships in machine learning, biometrics, accelerated computing, and high-performance healthcare analytics. Her work reflects strong commitment toward applying AI for societal benefit, and she continues to advance her expertise through active research and academic contributions.

Profile: Google Scholar

Featured Publications

Sivakamasundari, P., Anandhi, S., Kumaran, A. A., Vijayakumar, K., Birnica, Y. J., & others. (2024). Early detection of glaucoma utilizing retinal nerve fiber layer (RNFL) investigation. International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems.

Sivakamasundari, P., & Niranjana, G. (2025). An automatic detection and classification of diabetic foot ulcers using Chebyshev chaotic ladybug beetle optimized extended Swin Transformer–InceptionV3 model. Biomedical Signal Processing and Control, 110, 108268.

Gomathi, G., Sumathy, V., Sivakamasundari, P., & Deepa, R. (2024). A various approaches of machine learning algorithms for kidney disease prediction. International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems.

Sivakamasundari, P., & Niranjana, G. (2024). Diabetic foot ulcer classification using deep learning approach. International Conference on Computer, Communication and Signal Processing (ICCCSP).

Sivakamasundari, P., & Niranjana, G. (2023). A critique on deep learning methodologies employed for the identification of diabetic retinopathy using fundus images. Intelligent Computing and Control for Engineering and Business Systems (ICCEBS).