Ms. Sivakamasundari | Computer Science | Best Researcher Award
Ms. P. Sivakamasundari is a dedicated academic and researcher in Computer Science and Engineering, recognized for her contributions to deep learning-based medical image analysis. With qualifications spanning Diploma, Bachelor’s, and Master’s degrees in Computer Science and Engineering, she is currently pursuing her Ph.D. at SRM Institute of Science and Technology. She has extensive teaching experience as an Assistant Professor for more than a decade, during which she has guided students in core computing subjects including algorithms, computation theory, compiler design, and image classification. Her research focuses on advanced deep learning frameworks for healthcare applications, particularly diabetic retinopathy and diabetic foot ulcer detection, resulting in book chapters, conference publications, and journal manuscripts under review. She has published and filed patents related to medical imaging and automated disease detection systems, demonstrating her innovation-driven approach. Her scholarly presence includes 1 citation, 1 h-index, and 0 i10-index, indicating emerging research visibility. She has completed multiple professional certifications and participated in workshops, FDPs, and internships in machine learning, biometrics, accelerated computing, and high-performance healthcare analytics. Her work reflects strong commitment toward applying AI for societal benefit, and she continues to advance her expertise through active research and academic contributions.
Profile: Google Scholar
Featured Publications
Sivakamasundari, P., Anandhi, S., Kumaran, A. A., Vijayakumar, K., Birnica, Y. J., & others. (2024). Early detection of glaucoma utilizing retinal nerve fiber layer (RNFL) investigation. International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems.
Sivakamasundari, P., & Niranjana, G. (2025). An automatic detection and classification of diabetic foot ulcers using Chebyshev chaotic ladybug beetle optimized extended Swin Transformer–InceptionV3 model. Biomedical Signal Processing and Control, 110, 108268.
Gomathi, G., Sumathy, V., Sivakamasundari, P., & Deepa, R. (2024). A various approaches of machine learning algorithms for kidney disease prediction. International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems.
Sivakamasundari, P., & Niranjana, G. (2024). Diabetic foot ulcer classification using deep learning approach. International Conference on Computer, Communication and Signal Processing (ICCCSP).
Sivakamasundari, P., & Niranjana, G. (2023). A critique on deep learning methodologies employed for the identification of diabetic retinopathy using fundus images. Intelligent Computing and Control for Engineering and Business Systems (ICCEBS).